Skip to main content
Log in

Highly Diastereoselective Metal-Free Catalytic Synthesis of Drug-Like Spiroimidazolidinone

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A four-step procedure has been developed for the synthesis of (S)-3-isopropyl-1-[(R)-1-phenylethyl)- 1,4-diazaspiro[4.5]decan-2-one with high diastereoselectivity (up to 95% de) from (S)-α-aminoisovaleric acid (L-valine). Quantum chemical computations of the synthesized compound have been performed using Gaussian 09 software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeGrado, W.F., Chem. Rev., 2001, vol. 101, p. 3025. https://doi.org/10.1021/cr000663z

    Article  PubMed  CAS  Google Scholar 

  2. Martynowski, D., Eyobo, Y., Li, T., Yang, K., Liu, A., and Zhang, H., Biochemistry., 2006, vol. 45, p. 10412. https://doi.org/10.1021/bi060903q

    Article  PubMed  CAS  Google Scholar 

  3. Dean, S.M., Greenberg, W.A., and Wong, C.H., Adv. Synth. Catal., 2007, vol. 349, p. 1308. https://doi.org/10.1002/adsc.200700115

    Article  CAS  Google Scholar 

  4. Wagner, C., Kotthaus, A.F., and Kirsch, S.F., Chem. Commun., 2017, vol. 53, p. 4513. https://doi.org/10.1039/C7CC01561E

    Article  CAS  Google Scholar 

  5. de la Torre, A.F., Rivera, D.G., Ferreira, M.A.B., Corrêa, A.G., and Paixão, M.W., J. Org. Chem., 2013, vol. 78, p. 10221. https://doi.org/10.1021/jo401609z

    Article  PubMed  CAS  Google Scholar 

  6. Duschmalé, J., Kohrt, S., and Wennemers, H., Chem. Commun., 2014, vol. 50, p. 8109. https://doi.org/10.1039/C4CC01759E

    Article  CAS  Google Scholar 

  7. Zlotin, S.G., Kucherenko, A.S., and Beletskaya, I.P., Russ. Chem. Rev., 2009, vol. 78, p. 737. https://doi.org/10.1070/rc2009v078n08abeh004040

    Article  CAS  Google Scholar 

  8. Krattiger, P., Kovasy, R., Revell, J.D., Ivan, S., and Wennemers, H., Org. Lett., 2005, vol. 7, p. 1101. https://doi.org/10.1021/ol0500259

    Article  PubMed  CAS  Google Scholar 

  9. Samanta, S., Liu, J., Dodda, R., and Zhao, C.-G., Org. Lett., 2005, vol. 7, p. 5321. https://doi.org/10.1021/ol052277f

    Article  PubMed  CAS  Google Scholar 

  10. Tang, Z., Jiang, F., Yu, L.-T., Cui, X., Gong, L.-Z., Mi, A.-Q., Jiang, Y.-Z., and Wu, Y.-D., J. Am. Chem. Soc., 2003, vol. 125, p. 5262. https://doi.org/10.1021/ja034528q

    Article  PubMed  CAS  Google Scholar 

  11. He, L., Jiang, J., Tang, Z., Cui, X., Mi, A.-Q., Jiang, Y.-Z., and Gong, L.-Z., Tetrahedron: Asymmetry, 2007, vol. 18, p. 265. https://doi.org/10.1016/j.tetasy.2007.01.028

    Article  CAS  Google Scholar 

  12. Córdova, A., Tetrahedron. Lett., 2004, vol. 45, p. 3949. https://doi.org/10.1016/j.tetlet.2004.03.080

    Article  CAS  Google Scholar 

  13. Tang, Z., Yang, Z.-H., Chen, X.-H., Cun, L.-F., Mi, A.-Q., Jiang, Y.-Z., and Gong, L.-Z., J. Am. Chem. Soc., 2005, vol. 127, p. 9285. https://doi.org/10.1021/ja0510156

    Article  PubMed  CAS  Google Scholar 

  14. Kucherenko, A.S., Siyutkin, D.E., Dashkin, R.R., and Zlotin, S.G., Russ. Chem. Bull., Int. Ed., 2013, vol. 62, p. 1010. https://doi.org/10.1007/s11172-013-0132-z

    Article  CAS  Google Scholar 

  15. Sebahar, P.R. and Williams, R.M., J. Am. Chem. Soc., 2000, vol. 122, p. 5666. https://doi.org/10.1021/ja001133n

    Article  CAS  Google Scholar 

  16. DeMong, D., Dai, X., Hwa J., Miller, M., Lin, S.-I., Kang, L., Stamford, A., Greenlee, W., Yu, W., Wong, M., Lavey, B., Kozlowski, J., Zhou, G., Yang, D.-Y., Patel, B., Soriano, A., Zhai, Y., Sondey, C., Zhang, H., Lachowicz, J., Grotz, D., Cox, K., Morrison, R., Andreani, T., Cao, Y., Liang, M., Meng, T., McNamara, P., Wong, J., Bradley, P., Feng, K.-I., Belani, J., Chen, P., Dai, P., Gauuan, J., Lin, P., and Zhao, H., J. Med. Chem., 2014, vol. 57, p. 2601. https://doi.org/10.1021/jm401858f

    Article  PubMed  CAS  Google Scholar 

  17. Ghosh, A.K. and Osswald, H.L., Chem. Soc. Rev., 2014, vol. 43, p. 6765. https://doi.org/10.1039/C3CS60460H

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jiang, Y., Chen, X., Hu, X.Y., Shu, C., Zhang, Y.H., Zheng, Y.S., Lian, C.X., Yuan, W.C., and Zhang, X.M., Adv. Synth. Catal., 2013, vol. 355, p. 1931. https://doi.org/10.1002/adsc.201300184

    Article  CAS  Google Scholar 

  19. Barrulas, P.C., Genoni, A., Benaglia, M., and Burke, A.J., Eur. J. Org. Chem., 2014, p. 7339. https://doi.org/10.1002/ejoc.201403180

    Google Scholar 

  20. Jiang, Y., Chen, X., Zheng, Y., Xue, Z., Shu, C., Yuan, W., and Zhang, X., Angew. Chem., Int. Ed., 2011, vol. 50, p. 7304. https://doi.org/10.1002/ange.201102150

    Article  CAS  Google Scholar 

  21. Beeson, T.D., Mastracchio, A., Hong, J.-B., Ashton, K., and MacMillan, D.W.C., Scince., 2007, vol. 316, p. 582. https://doi.org/10.1126/science.1142696

    Article  CAS  Google Scholar 

  22. Brenna, D., Porta, R., Massolo, E., Raimondi, L., and Benaglia, M., Chem. Cat. Chem., 2017, vol. 9, p. 941. https://doi.org/10.1002/cctc.201700052

    CAS  Google Scholar 

  23. Holland, M.C., Metternich, J.B., Daniliuc, C., Schweizer, W.B., and Gilmour, R., Chem. Eur. J., 2015, vol. 21, p. 10031. https://doi.org/10.1002/chem.201500270

    Article  PubMed  CAS  Google Scholar 

  24. Kotthaus, A.F. and Altenbach, H.-J., Amino Acids., 2011, vol. 40, p. 527. https://doi.org/10.1007/s00726-010-0665-5

    Article  PubMed  CAS  Google Scholar 

  25. Trachsel, A., Buchs, B., Godin, G., Crochet, A., Fromm, K.M., and Herrmann, A., Eur. J. Org. Chem., 2012, p. 2837. https://doi.org/10.1002/ejoc.201200081

    Google Scholar 

  26. Das, J.P. and Marek, I., Chem. Commun., 2011, vol. 47, p. 4593. https://doi.org/10.1039/C0CC05222A

    Article  CAS  Google Scholar 

  27. Hawner, C. and Alexakis, A., Chem. Commun., 2010, vol. 46, p. 7295. https://doi.org/10.1039/C0CC02309D

    Article  CAS  Google Scholar 

  28. Hojoh, K., Shido, Y., Ohmiya, H., and Sawamura, M., Angew. Chem., Int. Ed., 2014, vol. 53, p. 4954. https://doi.org/10.1002/ange.201402386

    Article  CAS  Google Scholar 

  29. Mingat, G., McDouall, J.J.W., and Clayden, J., Chem. Commun., 2014, vol. 50, p. 6754. https://doi.org/10.1039/C4CC02596B

    Article  CAS  Google Scholar 

  30. Ma, C.H., Kang, T.R., He, L., and Liu, Q.Z., Eur. J. Org. Chem., 2014, p. 3981. https://doi.org/10.1002/ejoc.201402243

    Google Scholar 

  31. Wang, B., Wu, F., Wang, Y., Liu, X., and Deng, L., J. Am. Chem. Soc., 2007, vol. 129, p. 768. https://doi.org/10.1021/ja0670409

    Article  PubMed  CAS  Google Scholar 

  32. Dutta, B., Gilboa, N., and Marek, I., J. Am. Chem. Soc., 2010, vol, 132, p. 5588. https://doi.org/10.1021/ja101371x

    Article  PubMed  CAS  Google Scholar 

  33. Yus, M., González-Gómez, J.C., and Foubelo, F., Chem. Rev., 2011, vol. 111, p. 7774. https://doi.org/10.1021/cr1004474

    Article  PubMed  CAS  Google Scholar 

  34. Pernet-Poil-Chevrier, A., Cantagrel, F., Jeune, K.L., Philouze, C., and Chavant, P.Y., Tetrahedron: Asymmetry., 2006, vol. 17, p. 1969. https://doi.org/10.1016/j.tetasy.2006.06.046

    Article  CAS  Google Scholar 

  35. Hou, Y., Zhou, Z., Liu, P., Wang, J., Hou, Q., Wen, P., and Wang, H., Tetrahedron: Asymmetry., 2017, vol. 28, p. 930. https://doi.org/10.1016/j.tetasy.2017.05.014

    Article  CAS  Google Scholar 

  36. Zhou, Z., Zheng, X., Liu, J., Li, J., Wen, P., and Wang, H., Synlett, 2017, vol. 28, p. 999. https://doi.org/10.1055/s-0036-1588137

    Article  CAS  Google Scholar 

  37. Kumar, R. and Van der Eycken, E., Chem. Soc. Rev., 2013, vol. 42, p. 1121. https://doi.org/10.1039/C2CS35397K

    Article  PubMed  CAS  Google Scholar 

  38. Henrion, M., Ritleng, V., and Chetcuti, M.J., ACS Catal., 2015, vol. 5, p. 1283. https://doi.org/10.1021/cs5014927

    Article  CAS  Google Scholar 

  39. Hu, X.-M., Zhang, D.-X., Zhang, S.-Y., and Wang, P.-A., RSC Adv., 2015, vol. 5, p. 39557. https://doi.org/10.1039/C5RA07019H

    Article  CAS  Google Scholar 

  40. Zhao, J.-F., Tan, B.-H., and Loh, T.-P., Chem. Sci., 2011, vol. 2, p. 349. https://doi.org/10.1039/C0SC00454E

    Article  CAS  Google Scholar 

  41. Miura, T., Kasuga, H., Imai, K., Ina, M., Tada, N., Imai, N., and Itoh, A., Org. Biomol. Chem., 2012, vol. 10, p. 2209. https://doi.org/10.1039/C2OB06955E

    Article  PubMed  CAS  Google Scholar 

  42. Zhang, Q., Cui, X., Zhang, L., Luo, S., Wang, H., and Wu, Y., Angew. Chem., Int. Ed., 2015, vol. 54, p. 5210. https://doi.org/10.1002/anie.201500070

    Article  CAS  Google Scholar 

  43. Khatik, G.L., Khurana, R., Kumar, V., and Nair, V.A., Synthesis, 2011, p. 3123. https://doi.org/10.1055/s-0030-1260187

    Google Scholar 

  44. Khatik, G.L., Kaur, J., Kumar, V., Tikoo, K., and Nair, V.A., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 1912. https://doi.org/10.1016/j.bmcl.2012.01.059.

    Article  PubMed  CAS  Google Scholar 

  45. Chouhan, M., Senwar, K.R., Sharma, R., Grover, V., and Nair, V.A., Green. Chem., 2011, vol. 13, p. 2553. https://doi.org/10.1039/C1GC15416H

    Article  CAS  Google Scholar 

  46. Kumar, V., Raghavaiah, P., Mobin, S.M., and Nair, V.A., Org. Biomol. Chem., 2010, vol. 8, p. 4960. https://doi.org/10.1039/C0OB00230E

    Article  PubMed  CAS  Google Scholar 

  47. Khatik, G.L., Kumar, V., and Nair, V.A., Org. Lett., 2012, vol. 14, p. 2442. https://doi.org/10.1021/ol300949s

    Article  PubMed  CAS  Google Scholar 

  48. Joshi, B.D., Srivastava, A., Honorato, S.B., Tandon, P., Pessoa, O.D.L., Fechine, P.B.A., and Ayala, A.P., Spectrochim. Acta, Part A, 2013, vol. 113, p. 367. https://doi.org/10.1016/j.saa.2013.05.018

    Article  CAS  Google Scholar 

  49. Xavier, R.J. and Dinesh, P., Specttrochim. Acta, Part A., 2014, vol. 118, p. 999. https://doi.org/10.1016/j.saa.2013.09.120

    Article  CAS  Google Scholar 

  50. Govindarajan, M. and Karabacak, M., Spectrochim. Acta, Part A., 2012, vol. 96, p. 421. https://doi.org/10.1016/j.saa.2012.05.067

    Article  CAS  Google Scholar 

  51. Vijeetha, T., Balakrishna, M., Karuna, M.S.L., Rao, B.V.S.K., Prasad, R.B.N., Kumar, K.P., and Murthy, U.S.N., J. Oleo Sci., 2015, vol. 64, p. 705. https://doi.org/10.5650/jos.ess15063

    Article  PubMed  CAS  Google Scholar 

  52. Sinha, M., Dola, V.R., Agarwal, P., Srivastava, K., Haq, W., Puri, S.K., and Katti, S.B., Bioorg. Med. Chem., 2014, vol. 22, p. 3573. https://doi.org/10.1016/j.bmc.2014.05.024

    Article  PubMed  CAS  Google Scholar 

  53. Featherston, A.L. and Miller, S.J., Bioorg. Med. Chem., 2016, vol. 24, p. 4871. https://doi.org/10.1016/j.bmc.2016.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zheng, X., Deng, Q., Hou, Q., Zhang, K., Wen, P., Hu, S., and Wang, H., Synthesis., 2018, vol. 50, p. 2347. https://doi.org/10.1055/s-0037-1609492

    Article  CAS  Google Scholar 

  55. Ohkubo, A., Tago, N., Yokouchi, A., Nishino, Y., Yamada, K., Tsunoda, H., Seio, K., and Sekine, M., Org. Lett., 2011, vol. 14, p. 10. https://doi.org/10.1021/ol2026075

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Sheffield University (UK) for recording IR, 1H and 13C NMR, and high-resolution mass spectra.

Funding

This work was financially supported by the Ministry of Higher Education and Scientific Research (Iraq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Jassem.

Ethics declarations

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jassem, A.M., Raheemah, A.H., Radhi, W.A. et al. Highly Diastereoselective Metal-Free Catalytic Synthesis of Drug-Like Spiroimidazolidinone. Russ J Org Chem 55, 1598–1603 (2019). https://doi.org/10.1134/S107042801910021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042801910021X

Keywords

Navigation