Skip to main content
Log in

Extraction Properties of 4-[(Hexylsulfanyl)methyl]-3,5-dimethyl-1-phenyl-1H-pyrazole in the Palladium(II) Recovery from Nitric Acid Solutions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Palladium(II) extraction from nitric acid solutions with the complex-forming reagent 4-[(hexylsulfanyl)methyl]-3,5-dimethyl-1-phenyl-1H-pyrazole, was studied using chloroform as a diluent. The reagent extracts Pd(II) with high efficiency from 0.5–5 M HNO3 solutions. It has been established that palladium(II) is extracted from 2 M HNO3 solutions by a coordination mechanism with the formation of the extracted compound [Pd(NO3)2μ-L]n (n > 2). Palladium(II) is quantitatively re-extracted with a nitric acid solution of thiourea. The reagent is promising for concentrating Pd(II) from nitric acid solutions and its highly selective separating from Fe(III), lanthanides(III), Al(III), Cu(II), and Ni(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Ruhela, R., Singh, A.K., Tomar, B.S., and Hubli, R.C., RSC Adv., 2014, vol. 4, no. 46, p. 24344. https://doi.org/10.1039/C4RA0202024C

    Article  CAS  Google Scholar 

  2. Tatarchuk, V.V., Druzhinina, I.A., Korda, T.M., Renard, E.V., and Torgov, V.G., Chem. Sustain. Dev., 2003, vol. 11, no. 3, p. 547.

    Google Scholar 

  3. Tateno, H., Park, K.C., and Tsukahara, T., Chem. Lett., 2018, vol. 47, no. 3, p. 318. https://doi.org/10.1246/cl.171035

  4. Cowley, A., PGM Market Report May 2022, Johnson Matthey PLC, 2022.

  5. Kolarik, Z., Platinum Metals Rev., 2005, vol. 49, no. 2, p. 79. https://doi.org/10.1595/147106705X35263

    Article  CAS  Google Scholar 

  6. Mastretta, R., Poirot, R., Bourgeois, D., and Meyer, D., Solv. Extr. Ion Exch., 2019, vol. 37, no. 2. P.140. https://doi.org/10.1080/07366299.2019.1630073

  7. Mowafy, E.A., Mohamed, D., and Alshammari, A., Sep. Sci. Technol., 2015, vol. 50, no. 15, p. 2352. https://doi.org/10.1080/01496395.2015.1056359

    Article  CAS  Google Scholar 

  8. Huang, H., Huang, C., Wu, Y., Ding, S., Liu, N., Su, D., and Lv, T., Hydrometallurgy, 2015, vol. 156, p. 6. https://doi.org/10.1016/j.hydromet.2015.05.002

    Article  CAS  Google Scholar 

  9. Mowafy, E.A. and Mohamed, D., Orient. J. Chem., 2017, vol. 33, no. 5, p. 2377. https://doi.org/10.13005/ojc/330530

    Article  CAS  Google Scholar 

  10. Torgov, V.G., Tkachev, S.V., and Us, T.V., Russ. J. Inorg. Chem., 2019, vol. 64, no. 4, p. 543. https://doi.org/10.1134/S0036023619040193

    Article  CAS  Google Scholar 

  11. Song, L., Wang, X., Li, L., Wang, Z., Xu, H., He, L., Li,Q., and Ding, S., Hydrometallurgy, 2022, vol. 211. Article ID 105888. https://doi.org/10.1016/j.hydromet.2022.105888

  12. Xiao, Q., Song, L., Wang, X., Xu, H., He, L., Li, Q., and Ding, S., Russ. J. Inorg. Chem., 2022, vol. 280, Article ID 119805. https://doi.org/10.1016/j.seppur.2021.119805

  13. Ruhela, R., Sharma, J.N., Tomar, B.S., Murali, M.S., Hubli, R.C., and Suri, A.K., Tetrahedron Lett., 2011, vol. 52, no. 30, p. 3929. https://doi.org/10.1016/j.tetlet.2011.05.099

    Article  CAS  Google Scholar 

  14. Ruhela, R., Tomar, B.S., Sharma, J.N., Seshagiri, T.K., Adya, V.C., Hubli, R.C., and Suri, A.K., Sep. Sci. Technol., 2013, vol. 48, no. 7, p. 1049. https://doi.org/10.1080/01496395.2012.724140

    Article  CAS  Google Scholar 

  15. Torgov, V., Kostin, G., Korda, T., Stoyanov, E., Kalchenko, V., Drapailo, A., Kasyan, O., Wipff, G., and Varnek, A., Solv. Extr. Ion Exch., 2005, vol. 23, no. 6, p. 781. https://doi.org/10.1080/07366290500294970

    Article  CAS  Google Scholar 

  16. Gandhi, M.R., Yamada, M., Haga, K., and Shibayama, A., Sci. Rep., 2017, vol. 7, Article ID 8709. https://doi.org/10.1038/s41598-017-09053-z

  17. Nowier, H.G., Arab J. Nucl. Sci. Appl., 2014, vol. 47, no. 1, p. 53.

    Google Scholar 

  18. Turanov, A.N., Karandashev, V.K., and Proshin, A.N., Solv. Extr. Ion Exch., 2008, vol. 26, no. 4, p. 360. https://doi.org/10.1080/07366290802182865

    Article  CAS  Google Scholar 

  19. Turanov, A.N., Karandashev, V.K., and Proshin, A.N., Russ. J. Inorg. Chem., 2009, vol. 54, no. 11, p. 1849. https://doi.org/10.1134/S0036023609110278

    Article  Google Scholar 

  20. Anpilogova, G.R., Khisamutdinov, R.A., Golubyatnikova, L.G., and Murinov, Yu.I., Russ. J. Gen. Chem., 2017, vol. 87, no. 1, p. 132. https://doi.org/10.1134/S1070363217010212

    Article  CAS  Google Scholar 

  21. Shmidt, V.S., Shorokhov, N.A., and Nikitin, S.D., Zh. Neorg. Khim., 1986, vol. 31, no. 4, p. 998.

    CAS  Google Scholar 

  22. Anpilogova, G.R., Baeva, L.A., Nugumanov, R.M., Fatykhov, A.A., and Murinov, Yu.I., Russ. J. Inorg. Chem., 2020, vol. 65, no. 1, p. 106. https://doi.org/10.1134/S0036023620010027

    Article  CAS  Google Scholar 

  23. Fujii, T., Egusa, S., Uehara, A., Kirishima, A., Yamagishi, I., Morita, Y., and Yamana, H., J. Radioanal. Nucl. Chem., 2011, vol. 290, no. 2, p. 475. https://doi.org/10.1007/s10967-011-1284-7

    Article  CAS  Google Scholar 

  24. Tatarchuk, V.V., Druzhinina, I.A., Korda, T.M., and Torgov, V.G., Russ. J. Inorg. Chem., 2002, vol. 47, no. 12, p. 1917.

    Google Scholar 

  25. Shorokhov, N.A. and Schmidt, V.S., Zh. Neorg. Khim., 1983, vol. 28, no. 5, p. 1240.

    CAS  Google Scholar 

  26. Baeva, L.A., Nugumanov, R.M., Fatykhov, A.A., and Lyapina, N.K., Russ. J. Org. Chem., 2018, vol. 54, no. 3, p. 444. https://doi.org/10.1134/S1070428018030120

    Article  CAS  Google Scholar 

  27. Anpilogova, G.R., Kondrat’eva, E.V., Afzaletdinova, N.G., Khisamutdinov, R.A., and Murinov, Yu.I., Russ. J. Inorg. Chem., 1996, vol. 41, no. 3, p. 429.

    Google Scholar 

  28. Ginzburg, S.I., Ezerskaya, N.A., Prokof’eva, I.V., Fedorenko, N.V., Shlenskaya, V.I., and Bel’skii, N.K., Analiticheskaya khimiya platinovykh metallov (Analytical Chemistry of Platinum Metals), Moscow: Nauka, 1972.

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Center for Collective Use “Chemistry” of the Ufa Institute of Chemistry of the Ufa Federal Research Center of the Russian Academy of Sciences and the Regional Center for Collective Use “Agidel” for the opportunity to carry out elemental analysis and to record IR and NMR spectra of compounds.

Funding

The work was carried out within the framework of the state task (topics nos. 123011300044-5 and 122031400274-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Anpilogova.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anpilogova, G.R., Baeva, L.A. & Nugumanov, R.M. Extraction Properties of 4-[(Hexylsulfanyl)methyl]-3,5-dimethyl-1-phenyl-1H-pyrazole in the Palladium(II) Recovery from Nitric Acid Solutions. Russ J Gen Chem 93, 1115–1121 (2023). https://doi.org/10.1134/S1070363223050110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223050110

Keywords:

Navigation