Skip to main content
Log in

Badly Approximable Matrices and Diophantine Exponents

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

This paper is a survey of results concerning different kinds of Diophantine exponents. Special attention is paid to the transference principle and the generalization of the concept of badly approximable numbers to matrices and lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. Apfelbeck, “A contribution to Khintchine’s principle of transfer,” Czech. Math. J. 1 (3), 119–147 (1951).

    MathSciNet  MATH  Google Scholar 

  2. V. I. Arnold, “Higher dimensional continued fractions,” Regular Chaotic Dyn. 3 (3), 10–17 (1998).

  3. V. I. Arnold, “Preface,” Am. Math. Soc. Transl. 197 (2), ix–xii (1999).

    MATH  Google Scholar 

  4. V. I. Arnold, Continued Fractions (Mosk. Tsentr Neprer. Mat. Obrazovan., Moscow, 2002) [in Russian].

    Google Scholar 

  5. K. Ball, “Volumes of sections of cubes and related problems,” Geometric Aspects of Functional Analysis (Springer, Berlin, 1989), pp. 251–260.

    Google Scholar 

  6. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper (Springer, Berlin, 1934).

    MATH  Google Scholar 

  7. Z. I. Borevich and I. R. Shafarevich, Number Theory (Nauka, Moscow, 1964) [in Russian].

    MATH  Google Scholar 

  8. Y. Bugeaud and M. Laurent, “On transfer inequalities in Diophantine approximations II,” Math. Z. 265 (2), 249–262 (2010).

    MathSciNet  MATH  Google Scholar 

  9. J. W. S. Cassels, An Introduction to Diophantine Approximation (Cambridge Univ. Press, Cambridge, 1957).

    MATH  Google Scholar 

  10. J. W. S. Cassels and H. P. F. Swinnerton-Dyer, “On the product of three homogeneous linear forms and indefinite ternary quadratic forms,” Philos. Trans. R. Soc. London Ser. A 248, 73–96 (1955).

    MathSciNet  MATH  Google Scholar 

  11. F. J. Dyson, “On simultaneous Diophantine approximations,” Proc. London Math. Soc. (2) 49, 409–420 (1947).

    MathSciNet  MATH  Google Scholar 

  12. G. Ewald, Combinatorial Convexity and Algebraic Geometry (Springer-Verlag, New York, 1996).

    MATH  Google Scholar 

  13. O. N. German, “Sails and norm minima of lattices,” Sb. Math. 196 (3), 337–365 (2005).

    MathSciNet  MATH  Google Scholar 

  14. O. N. German, “Klein polyhedra and norm minima of lattices,” Dokl. Math. 73 (1), 38–41 (2006).

    MATH  Google Scholar 

  15. O. N. German, “Klein polyhedra and lattices with positive norm minima,” J. Théor. Nombres de Bordeaux 19, 157–190 (2007).

    Google Scholar 

  16. O. N. German and E. L. Lakshtanov, “On a multidimensional generalization of Lagrange’s theorem on continued fractions,” Izv. Math. 72 (1), 47–61 (2008).

    MathSciNet  MATH  Google Scholar 

  17. O. N. German, “Transference inequalities for multiplicative Diophantine exponents,” Proc. Steklov Math. Inst. 275, 216–228 (2011).

    MathSciNet  MATH  Google Scholar 

  18. O. N. German, “On Diophantine exponents and Khintchine’s transference principle,” Moscow J. Combinatorics Number Theory 2 (2), 22–51 (2012).

    MathSciNet  MATH  Google Scholar 

  19. O. N. German, “Intermediate Diophantine exponents and parametric geometry of numbers,” Acta Arith. 154, 79–101 (2012).

    MathSciNet  MATH  Google Scholar 

  20. B. Grünbaum, Convex Polytopes (Interscience, London, 1967).

    MATH  Google Scholar 

  21. V. Jarník, “Über einen Satz von A. Khintchine,” Prace Mat. Fiz. 43, 151–166 (1936).

    MATH  Google Scholar 

  22. V. Jarník, “Über einen Satz von A. Khintchine 2,” Acta Arith. 2, 1–22 (1936).

    MATH  Google Scholar 

  23. V. Jarník, “Zum Khintchineschen ‘Übertragungssatz',” Trav. Inst. Math. Tbilissi 3, 193–212 (1938).

    MATH  Google Scholar 

  24. A. Ya. Khintchine, “Über eine Klasse linearer Diophantischer Approximationen,” Rend. Sirc. Mat. Palermo 50, 170–195 (1926).

    MATH  Google Scholar 

  25. A. Ya. Khintchine, “On some applications of the method of the additional variable,” Usp. Mat. Nauk 3 (6), 188–200 (1948).

    MathSciNet  Google Scholar 

  26. F. Klein, “Über eine geometrische Auffassung der gewohnlichen Kettenbruchentwichlung,” Nachr. Ges. Wiss. Gottingen 3, 357–359 (1895).

    MATH  Google Scholar 

  27. E. Korkina, “La périodecité des fractions continues multidimensionnelles,” C. R. Acad. Sci. Paris Sér. I 319, 777–780 (1994).

    MathSciNet  MATH  Google Scholar 

  28. E. I. Korkina, “Two-dimensional continued fractions: The simplest examples,” Proc. Steklov Math. Inst. 209, 143–166 (1995).

    MathSciNet  MATH  Google Scholar 

  29. G. Lachaud, “Polyèdre d’Arnol’d et voile d’un cône simplicial: Analogues du théorème de Lagrange,” C. R. Acad. Sci. Paris Sér. I 317, 711–716 (1993).

    MathSciNet  MATH  Google Scholar 

  30. G. Lachaud, “Sails and Klein polyhedra,” Contemp. Math. 210, 373–385 (1998).

  31. G. Lachaud, Voiles et Polyèdres de Klein (Hermann, Paris, 2002).

  32. M. Laurent, “On transfer inequalities in Diophantine approximation,” in Analytic Number Theory, Essays in Honor of Klaus Roth, Ed. by W. W. L. Chen, W. T. Gowers, H. Halberstam, W. M. Schmidt, and R. C. Vaughan (Cambridge Univ. Press, Cambridge, 2009), pp. 306–314.

    Google Scholar 

  33. M. Laurent, “Exponents of Diophantine approximation in dimension two,” Can. J. Math. 61, 165–189 (2009).

    MathSciNet  MATH  Google Scholar 

  34. P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture (Cambridge Univ. Press, Cambridge, 1971).

    MATH  Google Scholar 

  35. K. Mahler, “Ein Übertragungsprinzip für lineare Ungleichungen,” Čas. Pešt. Mat. Fys. 68, 85–92 (1939).

    MathSciNet  MATH  Google Scholar 

  36. K. Mahler, “On a theorem of Dyson,” Mat. Sb. 26 (3), 457–462 (1950).

    MathSciNet  MATH  Google Scholar 

  37. K. Mahler, “On compound convex bodies (I),” Proc. London Math. Soc. (3) 5, 358–379 (1955).

    MathSciNet  MATH  Google Scholar 

  38. N. G. Moshchevitin, “Khintchine’s singular systems and their applications,” Russ. Math. Surv. 65 (3), 43–126 (2010).

    MATH  Google Scholar 

  39. J.-O. Moussafir, “Convex hulls of integral points,” J. Math. Sci. 113, 647–665 (2003).

    MathSciNet  MATH  Google Scholar 

  40. W. M. Schmidt, “On heights of algebraic subspaces and Diophantine approximations,” Ann. Math. 85 (3), 430–472 (1967).

    MathSciNet  MATH  Google Scholar 

  41. W. M. Schmidt, Diophantine Approximation (Springer-Verlag, Berlin, 1980).

    MATH  Google Scholar 

  42. W. M. Schmidt and L. Summerer, “Parametric geometry of numbers and applications,” Acta Arith. 140 (1), 67–91 (2009).

    MathSciNet  MATH  Google Scholar 

  43. W. M. Schmidt and L. Summerer, “Diophantine approximation and parametric geometry of numbers,” Monatsh. Math. 169, 51–104 (2013). https://doi.org/10.1007/s00605-012-0391-z

    Article  MathSciNet  MATH  Google Scholar 

  44. W. M. Schmidt and Y. Wang, “A note on a transference theorem of linear forms,” Sci. Sin. 22 (3), 276–280 (1979).

    MathSciNet  MATH  Google Scholar 

  45. B. F. Skubenko, “Minima of a decomposable cubic form in three variables,” Zap. Nauchn. Sem. LOMI 168, 125–139 (1988).

    MATH  Google Scholar 

  46. B. F. Skubenko, “Minima of decomposable forms of degree n in n variables for \(n \geqslant 3,\)" J. Sov. Math. 62 (4), 2928–2935 (1992).

    MathSciNet  Google Scholar 

  47. H. Tsuchihashi, “Higher dimensional analogues of periodic continued fractions and cusp singularities,” Tohoku Math. J. 35, 607–639 (1983).

    MathSciNet  MATH  Google Scholar 

  48. J. D. Vaaler, “A geometric inequality with applications to linear forms,” Pacif. J. Math. 83 (2), 543–553 (1979).

    MathSciNet  MATH  Google Scholar 

  49. M. Waldschmidt, “Report on some recent advances in Diophantine approximation,” Special Volume in Honor of Serge Lang (Springer-Verlag, 2009). arXiv:0908.3973v1

  50. Y. Wang and K. Yu, “A note on some metrical theorems in Diophantine approximation,” Chin. Ann. Math. 2, 1–12 (1981).

    MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is a winner of the “Junior Leader” contest conducted by the Theoretical Physics and Mathematics Advancement Foundation “BASIS” and would like to thank its sponsors and jury.

Funding

This work was supported by the Russian Science Foundation, grant no. 22-41-05001, https://rscf.ru/project/22-41-05001/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. German.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

German, O.N. Badly Approximable Matrices and Diophantine Exponents. Dokl. Math. 106 (Suppl 2), S201–S220 (2022). https://doi.org/10.1134/S106456242270017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106456242270017X

Keywords:

Navigation