Skip to main content
Log in

Molecular Dynamics Investigation of the Effect of the Interface Orientation on the Intensity of Titanium Dissolution in Crystalline and Amorphous Aluminum

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of the interface orientation on the intensity of dissolution of titanium in crystalline and amorphous aluminum is studied by molecular dynamics simulation. The following four orientations of the Ti–Al interface with respect to the Ti (hcp) and Al (fcc) lattices are considered: (1) (0001):(111), (2) (0001):(001), (3) (\(10\bar {1}0\)):(111), and (4) (\(10\bar {1}1\)):(001). The interface orientation is found to influence the intensity of dissolution of titanium in aluminum, which increases for the accepted designations in the order 1–2–3–4. An important phenomenon in this case turns out to be the formation of a thin (2–3 atomic planes thick) crystalline layer in aluminum, which repeats the crystal lattice of titanium, at the initial stage of dissolution. At a temperature below the melting point of aluminum, a grain boundary parallel to the interface forms behind this layer. At temperatures above the melting point of aluminum, this crystalline layer is preserved, but its thickness decreases gradually as the temperature increases. For aluminum in an amorphous state at temperatures below its melting point, the dissolution of titanium occurs at almost the same intensity as in the crystalline state of aluminum, which is explained by the formation of a similar crystalline layer in aluminum at the interface in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Y.-W. Kim, J. Met. 46, 30 (1994).

    Google Scholar 

  2. F. Appel, P. A. Beaven, and R. Wagner, Acta Metall. Mater. 41, 1721 (1993).

    Article  Google Scholar 

  3. J. Lapin, Proc. Met. 19, 2019 (2009).

    Google Scholar 

  4. T. Tetsui, Rare Met. 30, 294 (2011).

    Article  Google Scholar 

  5. T. Voisin, J.-P. Monchoux, and A. Couret, in Spark Plasma Sintering of Materials, Ed. by P. Cavaliere (Springer, Cham, 2019), p. 713.

    Google Scholar 

  6. Q. Wu, J. Wang, Y. Gu, Y. Guo, G. Xu, and Y. Cui, J. Phase Equilib. Diffus. 39, 724 (2018).

    Article  Google Scholar 

  7. N. Thiyaneshwaran, K. Sivaprasad, and B. Ravisankar, Sci. Rep. 8, 16797 (2018).

    Article  ADS  Google Scholar 

  8. H. Wu, Sh. Zhang, H. Hu, J. Li, J. Wu, Q. Li, and Zh. Wang, Intermetallics 110, 106483 (2019).

  9. J.-G. Luo, Welding J. 79, 239-s (2000).

  10. G. M. Poletaev, J. Exp. Theor. Phys. 133, 455 (2021).

    Article  ADS  Google Scholar 

  11. G. M. Poletaev and R. Yu. Rakitin, Fiz. Tverd. Tela 64, 412 (2022).

    Google Scholar 

  12. V. V. Boldyrev and K. Tkacova, J. Mater. Synt. Proc. 8, 121 (2000).

    Article  Google Scholar 

  13. V. Y. Filimonov, M. V. Loginova, S. G. Ivanov, A. A. Sitnikov, V. I. Yakovlev, A. V. Sobachkin, A. Z. Negodyaev, and A. Y. Myasnikov, Combust. Sci. Technol. 192, 457 (2020).

    Article  Google Scholar 

  14. M. V. Loginova, V. I. Yakovlev, V. Yu. Filimonov, A. A. Sitnikov, A. V. Sobachkin, S. G. Ivanov, and A. V. Gradoboev, Lett. Mater. 8, 129 (2018).

    Article  Google Scholar 

  15. R. R. Zope and Y. Mishin, Phys. Rev. B 68, 024102 (2003).

  16. Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee, Comput. Mater. Sci. 119, 1 (2016).

    Article  Google Scholar 

  17. Q.-X. Pei, M. H. Jhon, S. S. Quek, and Z. Wu, Comput. Mater. Sci. 188, 110239 (2021).

  18. C. Chen, F. Zhang, H. Xu, Z. Yang, and G. M. Poletaev, J. Mater. Sci. 57, 1833 (2022).

    Article  ADS  Google Scholar 

  19. G. M. Poletaev and I. V. Zorya, J. Exp. Theor. Phys. 131, 432 (2020).

    Article  ADS  Google Scholar 

  20. Q. Bizot, O. Politano, A. A. Nepapushev, S. G. Vadchenko, A. S. Rogachev, and F. Baras, J. Appl. Phys. 127, 145304 (2020).

  21. M. I. Mendelev, F. Zhang, H. Song, Y. Sun, C. Z. Wang, and K. M. Ho, J. Chem. Phys. 148, 214705 (2018).

  22. H. Y. Zhang, F. Liu, Y. Yang, and D. Y. Sun, Sci. Rep. 7, 10241 (2017).

    Article  ADS  Google Scholar 

  23. M. I. Mendelev, M. J. Rahman, J. J. Hoyt, and M. Asta, Model. Simul. Mater. Sci. Eng. 18, 074002 (2010).

  24. D. Y. Sun, M. Asta, and J. J. Hoyt, Phys. Rev. B 69, 024108 (2004).

Download references

Funding

G.M. Poletaev and A.A. Sitnikov (problem statement, model development, editing of the final version of the article) acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation (grant no. FZMM-2023-0003). Yu.V. Bebikhov and A.S. Semenov (computer experiments, data acquisition and interpretation) acknowledge the support of the Russian Science Foundation (grant no. 22-22-00810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Poletaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Bebikhov, Y.V., Semenov, A.S. et al. Molecular Dynamics Investigation of the Effect of the Interface Orientation on the Intensity of Titanium Dissolution in Crystalline and Amorphous Aluminum. J. Exp. Theor. Phys. 136, 477–483 (2023). https://doi.org/10.1134/S1063776123040118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123040118

Navigation