Skip to main content
Log in

Structural Characterization, and Computational Analysis of (E)-6-bromo-3-(3,4-dimethoxybenzylidene)-7-methoxy-1-tosyl-2,3-dihydroquinolin-4(1H)-one

  • CRYSTALLOGRAPHIC SYMMETRY
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The target compound (E)-6-bromo-3-(3,4-dimethoxybenzylidene)-7-methoxy-1-tosyl-2,3-dihydroquinolin-4(1H)-one, which is a quinolone derivative holding tosyl group has been successfully synthesized through reported method via aza Baylis Hillman, 1,3-rearrangement and intramolecular amination reactions. The structure of the newly synthesized compound was characterized by, FTIR, NMR, HRMS, and X-ray diffraction techniques. The compound crystallizes in, a monoclinic crystal system with a space group of P21/n and was determined with a final residual value (R) equal to 0.0332. A molecular docking study revealed feasible binding modes of the title compound to the protein target, which showed small binding free energies. The inter-molecular interaction of the target molecule was studied by utilizing 2D and 3D Hirshfeld surface techniques. The optimized molecular geometry, vibrational frequencies, and frontier molecular orbital energies of the compound were studied using density functional theory. The UV-visible study was also carried out to understand electron interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. P. Shi, L. Wang, K. Chen, et al., Org. Lett. 19, 2418 (2017). https://doi.org/10.1021/acs.orglett.7b00968

    Article  Google Scholar 

  2. C. Shen, A. Wang, J. Xu, et al., Chemistry 5, 1059 (2019). https://doi.org/10.1016/j.chempr.2019.01.006

    Article  Google Scholar 

  3. G. E. Stein, Pharmacotherapy 8, 301 (1988). https://doi.org/10.1002/j.1875-9114.1988.tb04088.x

    Article  Google Scholar 

  4. H. Liu and S. G. Mulholland, Am. J. Med. 118, 14 (2005). https://doi.org/10.1016/j.amjmed.2005.05.009

    Article  Google Scholar 

  5. K. J. Aldred, R. J. Kerns, and N. Osheroff, Biochemistry 53, 1565 (2014). https://doi.org/10.1021/bi5000564

    Article  Google Scholar 

  6. J. P. Michael, Nat. Prod. Rep. 25, 166 (2008). https://doi.org/10.1039/B612168N

    Article  Google Scholar 

  7. P. Ghosh, and S. Das, Eur. J. Org. Chem. 2019, 4466 (2019). https://doi.org/10.1002/ejoc.201900452

    Article  Google Scholar 

  8. E. Raga, M. Escolano, J. Torres, et al., Adv. Synth. Catal. 361, 1102 (2019). https://doi.org/10.1002/adsc.201801490

    Article  Google Scholar 

  9. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  10. A. Bruker, Saint and SADABS (Bruker AXS Inc., Madison, Wisconsin, USA, 2009).

    Google Scholar 

  11. G. Sheldrick, SHELXS-97, Program for X-Ray Crystal Structure Solution (University of Göttingen, Germany, 1997).

    Google Scholar 

  12. A. L. Spek, Acta Crystallogr. D: Biol. Crystallogr. 65, 148 (2009). https://doi.org/10.1107/S090744490804362X

    Article  Google Scholar 

  13. Chandra, K. B. Puttaraju, S. S. Mahesh, K. Shivashankar, N. K. Lokanath, and M. Madegowda, Bio-information 10 (5), 288 (2014).

    Google Scholar 

  14. http://www.rcsb.org/pdb/home/home.do

  15. http://www.ebi.ac.uk/pdbsum/

  16. A. W. Schuttelkopf and D. M. van Aalten, Acta Crystallogr. D: Biol. Crystallogr. 60, 1355 (2004). https://doi.org/10.1107/S0907444904011679

    Article  Google Scholar 

  17. P. R. Spackman, M. J. Turner, J. J. McKinnon, et al., J. Appl. Crystallogr. 54, 1006 (2021). https://doi.org/10.1107/S1600576721002910

    Article  Google Scholar 

  18. R. A. Gaussian, Inc Wallingford CT 121, 150 (2009).

    Google Scholar 

  19. R. Dennington, T. A. Keith, and J. M. Millam, GaussView 6.0.16 (Semichem Inc. Shawnee Mission KS USA, 2016).

    Google Scholar 

  20. T. Lu, and F. Chen, J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885

    Article  Google Scholar 

  21. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  22. M. A. Spackman, and D. Jayatilaka, Cryst. Eng. Commun. 11, 19 (2009). https://doi.org/10.1039/B818330A

    Article  Google Scholar 

  23. M. Toy, and H. Tanak, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 152, 530 (2016). https://doi.org/10.1016/j.saa.2014.11.003

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. S. Dileep or R. Gopalkrishne Urs.

Ethics declarations

The data were deposited in the Cambridge Crystallographic Database Deposition Number for molecule (3) is 2205295, contains the supplementary crystallographic data for these compounds, and can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahana, D., Dileep, C.S., Srikantamurthy, N. et al. Structural Characterization, and Computational Analysis of (E)-6-bromo-3-(3,4-dimethoxybenzylidene)-7-methoxy-1-tosyl-2,3-dihydroquinolin-4(1H)-one. Crystallogr. Rep. 68, 14–23 (2023). https://doi.org/10.1134/S1063774523330015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523330015

Navigation