Skip to main content
Log in

Modeling of Absorption in the Hα Line for the Exoplanet WASP-52b

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of modeling the Hα absorption spectrum of the atmosphere of the hot Jupiter WASP‑52b are presented. The atmosphere was modeled with a three-dimensional hydrodynamic code. Several different values of the XUV ionizing radiation were considered. The Lyα-photon transfer in the atmosphere was simulated by the Monte Carlo method. Spatial distributions of the volume density of hydrogen atoms excited to the second energy level H(2) were obtained, and absorption spectra in the Hα line were calculated. It was also shown that absorption takes place in a layer with a thickness of about 1.5 times the planetary radius, while the greatest influence on absorption is exerted by Lyα photons produced due to recombination of electrons and protons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. Vidal-Madjar, J.-M. Désert, A. L. des Etangs, G. Hébrard, G. Ballester, D. Ehrenreich, R. Ferlet, J. McConnell, M. Mayor, and C. Parkinson, Astrophys. J. 604, L69 (2004).

    Article  ADS  Google Scholar 

  2. A. L. Des Etangs, D. Ehrenreich, A. Vidal-Madjar, G. Ballester, J.-M. Désert, R. Ferlet, G. Hébrard, D. K. Sing, K.-O. Tchakoumegni, and S. Udry, Astron. Astrophys. 514, A72 (2010).

    Article  Google Scholar 

  3. F. Yan and T. Henning, Nat. Astron. 2, 714 (2018).

    Article  ADS  Google Scholar 

  4. P. W. Cauley, E. L. Shkolnik, I. Ilyin, K. G. Strassmeier, S. Redfield, and A. Jensen, Astron. J. 157, 69 (2019).

    Article  ADS  Google Scholar 

  5. N. Casasayas-Barris, E. Pallé, F. Yan, G. Chen, S. Kohl, M. Stangret, H. Parviainen, C. Helling, N. Watanabe, S. Czesla, A. Fukui, P. Montañés-Rodríguez, E. Nagel, N. Narita, L. Nortmann, G. Nowak, J. H. M. M. Schmitt, and M. R. Zapatero Osorio, Astron. Astrophys. 628, A9 (2019).

    Article  Google Scholar 

  6. A. G. Jensen, S. Redfield, M. Endl, W. D. Cochran, L. Koesterke, and T. Barman, Astrophys. J. 751, 86 (2012).

    Article  ADS  Google Scholar 

  7. P. W. Cauley, S. Redfield, A. G. Jensen, T. Barman, M. Endl, and W. D. Cochran, Astrophys. J. 810, 13 (2015).

    Article  ADS  Google Scholar 

  8. P. W. Cauley, S. Redfield, A. G. Jensen, and T. Barman, Astron. J. 152, 20 (2016).

    Article  ADS  Google Scholar 

  9. G. Chen, N. Casasayas-Barris, E. Pallé, F. Yan, M. Stangret, H. Cegla, R. Allart, and C. Lovis, Astron. Astrophys. 635, A171 (2020).

    Article  ADS  Google Scholar 

  10. M. K. Alam, N. Nikolov, M. López-Morales, D. K. Sing, J. M. Goyal, G. W. Henry, J. Sanz-Forcada, M. H. Williamson, T. M. Evans, H. R. Wakeford, et al., Astron. J. 156, 298 (2018).

    Article  ADS  Google Scholar 

  11. J. Kirk, L. Dos Santos, M. López-Morales, M. Alam, A. Oklopcic, M. MacLeod, L. Zeng, and G. Zhou, Bull. Am. Astron. Soc. 54, 102 (2022).

    Google Scholar 

  12. G. Chen, E. Pallé, L. Nortmann, F. Murgas, H. Parviainen, and G. Nowak, Astron. Astrophys. 600, L11 (2017).

    Article  ADS  Google Scholar 

  13. D. Yan, K. Seon, J. Guo, G. Chen, and L. Li, Astrophys. J. 936, 177 (2022).

    Article  ADS  Google Scholar 

  14. C. Huang, P. Arras, D. Christie, and Z.-Y. Li, Astrophys. J. 851, 150 (2017).

    Article  ADS  Google Scholar 

  15. I. Shaikhislamov, M. Khodachenko, H. Lammer, A. Berezutsky, I. Miroshnichenko, and M. Rumenskikh, Mon. Not. R. Astron. Soc. 481, 5315 (2018).

    Article  ADS  Google Scholar 

  16. I. Shaikhislamov, M. Khodachenko, H. Lammer, A. Berezutsky, I. Miroshnichenko, and M. Rumenskikh, Mon. Not. R. Astron. Soc. 491, 3435 (2020).

    ADS  Google Scholar 

  17. I. Miroshnichenko, I. Shaikhislamov, A. Berezutskii, M. Rumenskikh, and E. Vetrova, Astron. Rep. 65, 61 (2021).

    Article  ADS  Google Scholar 

  18. M. Khodachenko, I. Shaikhislamov, H. Lammer, A. Berezutsky, I. Miroshnichenko, M. Rumenskikh, K. Kislyakova, and N. Dwivedi, Astrophys. J. 885, 67 (2019).

    Article  ADS  Google Scholar 

  19. V. Bourrier and A. L. Des Etangs, Astron. Astrophys. 557, A124 (2013).

    Article  Google Scholar 

  20. Z. Zheng and J. Miralda-Escudé, Astrophys. J. 578, 33 (2002).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by Ministry of Science and Higher Education of the Russian Federation (grant 075-15-2020-780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Sharipov.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharipov, S.S., Miroshnichenko, I.B. & Shaikhislamov, I.F. Modeling of Absorption in the Hα Line for the Exoplanet WASP-52b. Astron. Rep. 67, 272–279 (2023). https://doi.org/10.1134/S1063772923030071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923030071

Keywords:

Navigation