Pattern Recognition and Image Analysis

, Volume 20, Issue 4, pp 536–541 | Cite as

Mixture graph based semi-supervised dimensionality reduction

  • G. X. YuEmail author
  • H. Peng
  • J. Wei
  • Q. L. Ma
Representation, Processing, Analysis, and Understanding of Images


Graph structure is crucial to graph based dimensionality reduction. A mixture graph based semi-supervised dimensionality reduction (MGSSDR) method with pairwise constraints is proposed. MGSSDR first constructs multiple diverse graphs on different random subspaces of dataset, then it combines these graphs into a mixture graph and does dimensionality reduction on this mixture graph. MGSSDR can preserve the pairwise constraints and local structure of samples in the reduced subspace. Meanwhile, it is robust to noise and neighborhood size. Experimental results on facial images feature extraction demonstrate its effectiveness.


dimensionality reduction mixture graph pairwise constraints noise 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik, Dimensionality Reduction: a Comparative Review. Tilburg University Tech. Rep., TiCC-TR 2009-005, 2009.Google Scholar
  2. 2.
    H. Cevikalp, J. Verbeek, F. Jurie, and A. Klaser, “Semi-supervised Dimensionality Reduction Using Pairwise Equivalence Constraints,” in Proc. Int. Conf. on Computer Vision Theory and Applications (Funchal, Madeira, Portugal, 2008), pp. 489–496.Google Scholar
  3. 3.
    X. J. Zhu, Semi-Supervised Learning Literature, Tech. Rep. 1530, Department of Computer Sciences, University of Wisconsin-Madison, 2008, available:
  4. 4.
    D. Q. Zhang, Z. H. Zhou, and S. C. Chen, “Semi-supervised Dimensionality Reduction,” in Proc. SIAM Int. Conf. on Data Mining (Minneapolis, MN, USA, 2007), pp. 629–634.Google Scholar
  5. 5.
    J. Wei and H. Peng, Neighborhood Preserving Based Semi-Supervised Dimensionality Reduction, Electron Lett. 19(11), 1190–1191 (2008).CrossRefGoogle Scholar
  6. 6.
    S. T. Roweis and L. K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science 290(22), 2323–2326. (2000).CrossRefGoogle Scholar
  7. 7.
    S. C. Yan, D. Xu, B. Y. Zhang, H. J. Zhang, Q. Yang, and S. Lin, Graph Embedding and Extensions: a General Framework for Dimensionality Reduction, IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007).CrossRefGoogle Scholar
  8. 8.
    L. Parsons, Q. Hua, and H. Liu, “Subspace Clustering for High Dimensional Data: a Review,” in Proc. ACM Int. Conf. on Knowledge Discovery and Data Mining Explorations Newsletter (Seattles, WA, USA, 2004), pp. 90–105.Google Scholar
  9. 9.
    T. K. Ho, The Random Subspace Method for Constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998).CrossRefGoogle Scholar
  10. 10.
    P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection, IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997).CrossRefGoogle Scholar
  11. 11.
    M. Belkin and P. Niyogi, Semi-supervised learning on Riemannian manifolds, Mach. Learn. 56(1), 209–239 (2004).zbMATHCrossRefGoogle Scholar
  12. 12.
    A. M. Martinez and R. Benavente, The AR-Face DataBase, CVC Tech. Rep. 24 (1998).Google Scholar
  13. 13.
    A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, From Few to Many: Illumination Cone Models for Face Recognition Under Variable Lighting and Pose, IEEE Trans. Pattern Anal. Mach. Intell. 23(6) 643–660 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations