Skip to main content
Log in

Daily Short-Term Temperature Drops Can Alleviate the Negative Effect of Continuous Lighting on the Photosynthetic Apparatus in Plants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Several crops (tomato, eggplant, sweet pepper, and cucumber) were used to examine the impact of continuous (24 h a day) lighting on photosynthetic characteristics of plants grown permanently at 26°C and those exposed daily to short-term (2 h) cooling at 10°C (temperature-drop treatments). The plant response was assessed by indices characterizing the pigment complex and the photosynthetic activity of leaves. Growing plans under continuous light at a constant temperature resulted in leaf photodamage and photoinhibition in all four species, although to varying degrees. The temperature-drop treatments prevented the photodamage of leaves under continuous light in all species and enabled high sustainable levels of photosynthetic activity in tomato, pepper, and cucumber. The results suggest that temperature-drop treatments can be regarded as an agricultural technique that exploits the benefits of continuous lighting while mitigating the negative effects of constant light. However, the effectiveness of this technique would depend on the choice of optimal intensities and durations of the drop treatment since these parameters may vary depending on plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Sysoeva, M.I., Markovskaya, E.F., and Shibaeva, T.G., Plants under continuous light: A review, Plant Stress, 2010, vol., 4, p. 5.

    Google Scholar 

  2. Velez-Ramirez, A.I., van Ieperen, W., Vreugdenhil, D., and Millenaar, F.F., Plants under continuous light, Trends Plant Sci., 2011, vol. 16, p. 310. https://doi.org/10.1016/j.tplants.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  3. Hague, M.S., Kjaer, K.H., Roserqvist, E., and Ottosen, C.O., Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species, Front. Plant Sci., 2015, vol. 6, p. 522. https://doi.org/10.3389/fpls.2015.00522

    Article  Google Scholar 

  4. Ohtake, N., Ishikura, M., and Suzuki, H., Continuous irradiation with alternating red and blue light enhances plant growth while keeping nutritional quality in lettuce, Hort. Sci., 2018, vol. 53, p. 1804. https://doi.org/10.21273/HORTSCI13469-18

    Article  Google Scholar 

  5. Lanoue, J., Zheng, J., Little, C., Thibodeau, A., Grodzinski, B., and Hao, X., Alternating red and blue light-emitting diodes allows for injury-free tomato production with continuous lighting, Front. Plant Sci., 2019, vol. 10, p. 1114. .https://doi.org/10.3389/fpls.2019.01114

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shibaeva, T.G., Mamaev, A.V., Sherudilo, E.G., and Titov, A.F., The role of the photosynthetic daily light integral in plant response to extended photoperiods, Russ. J. Plant Physiol., 2022, vol. 69, p. 7. https://doi.org/10.1134/S1021443722010216

    Article  CAS  Google Scholar 

  7. Shibaeva, T.G., Sherudilo, E.G., Rubaeva, A.A., and Titov, A.F., Continuous lighting enhances yield and nutritional value of four genotypes of Brassicaceae microgreens, Plants, 2022, vol. 11, p. 176. https://doi.org/10.3390/plants11020176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shibaeva, T.G., Mamaev, A.V., and Titov, A.F., Possible physiological mechanisms of leaf photodamage in plants grown under continuous lighting, Russ. J. Plant Physiol., 2023, vol. 70. https://doi.org/10.31857/S0015330322600541

  9. Kitaya, Y., Niu, G., Kozai, T., and Ohashi, M., Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants, Hort. Sci., 1998, vol. 33, p. 988. https://doi.org/10.21273/HORTSCI.33.6.988

    Article  Google Scholar 

  10. Ohyama, K. and Kozai, T., Estimating electric energy consumption and its cost in a transplant production factory with artificial lighting: a case study, J. Soc. High Technol. Agr., 1998, vol. 10, p. 96.

    Article  Google Scholar 

  11. Ohyama, K., Manabe, K., Omura, Y., Kubota, C., and Kozai, T., A comparison between closed-type and open-type transplant production systems with respect to quality of tomato plug transplants and resource consumption during summer, Environ. Control Biol., 2003, vol. 41, p. 57. https://doi.org/10.2525/ecb1963.41.57

    Article  Google Scholar 

  12. Ohyama, K., Manabe, K., Omura, Y., and Kozai, T., Potential use of a 24-hour photoperiod (continuous light) with alternating air temperature for production of tomato plug transplants in a closed system, Hort. Sci., 2005, vol. 40, p. 374. https://doi.org/10.21273/HORTSCI.40.2.374

    Article  Google Scholar 

  13. Hillman, W.S., Injury of tomato plants by continuous light and unfavorable photoperiodic cycles, Amer. J. Bot., 1956, vol. 43, p. 89. https://doi.org/10.2307/2438816

    Article  Google Scholar 

  14. Bradley, F.M. and Janes, H.W., Carbon partitioning in tomato leaves exposed to continuous light, Acta Hort., 1985, vol. 174, p. 293. https://doi.org/10.17660/ActaHortic.1985.174.37

  15. Vézina, F., Trudel, M.J., and Gosselin, A., Influence du mode d’utilisation de l’éclairage d’appoint sur la productivité et la physiologie de la tomate de serre, Can. J. Plant Sci., 1991, vol. 71, p. 923. https://doi.org/10.4141/cjps91-132

    Article  Google Scholar 

  16. Murage, E.N., Sato, Y., and Masuda, M., Influence of light quality, PPFD, and temperature on leaf chlorosis of eggplants grown under continuous illuminations, Sci. Hort., 1997, vol. 68, p. 73. https://doi.org/10.1016/S0304-4238(96)00953-3

    Article  CAS  Google Scholar 

  17. Demers, D.A. and Gosselin, A., Growing greenhouse tomato and sweet pepper under supplemental lighting: optimal photoperiod, negative effects of long photoperiod and their causes, Acta Hort., 2002, vol. 580, p. 83. https://doi.org/10.17660/ActaHortic.2002.580.9

  18. Ohyama, K., Omura, Y., and Kozai, T., Effects of air temperature regimes on physiological disorders and floral development of tomato seedlings grown under continuous light, Hort. Sci., 2005, vol. 40, p. 1304. https://doi.org/10.21273/HORTSCI.40.5.1304

    Article  Google Scholar 

  19. Matsuda, R., Ozawa, N., and Fujiwara, K., Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences, Sci. Hort., 2014, vol. 170, p. 150. https://doi.org/10.1016/j.scienta.2014.03.014

    Article  CAS  Google Scholar 

  20. Hague, M., de Sousa, A., Soares, C., Kjaer, K.H., Fidalgo, F., Rosenqvist, E., and Ottosen, C.-O., Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance, Front. Plant Sci., 2017, vol. 8, p. 1602. https://doi.org/10.3389/fpls.2017.01602

    Article  Google Scholar 

  21. Shibaeva, T.G., Mamaev, A.V., Sherudilo, E.G., Ikkonen, and E.N., Titov, A.F., Age-related changes in sensitivity of tomato (Solanum lycopersicum L.) leaves to continuous light, Russ. J. Plant Physiol., 2021, vol. 68, p. 948. https://doi.org/10.1134/S1021443721040154

    Article  CAS  Google Scholar 

  22. Tibbitts, T.W., Bennett, S.M., and Cao, W., Control of continuous irradiation injury on potato with daily temperature cycling, Plant Physiol., 1990, vol. 93, p. 409. https://doi.org/10.1104/pp.93.2.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kristoffersen, T., Interactions of photoperiod and temperature in growth and development of young tomato plants (Lycopersicon esculentum Mill.), Physiol. Plant., 1963, vol. 16, p. 1.

    Google Scholar 

  24. Nilwik, H.J.M., Growth analysis of sweet pepper (Capsicum annuum L.) 2. Interacting effects of irradiance, temperature and plant age in controlled conditions, Ann. Bot., 1981, vol. 48, p. 136. https://doi.org/10.1093/oxfordjournals.aob.a086107

    Article  Google Scholar 

  25. Bünning, E., Untersuchungen uber die autonomen tagesperiodischen Bewegungen der Primarblatten von Phaseolus multiflorus, Jahrbücher für wissenchaftiche Botanik, 1931, vol. 75, p. 439.

  26. Ikkonen, E.N., Shibaeva, T.G., Rosenqwist, E., and Ottosen, C.-O., Daily temperature drop prevents inhibition of photosynthesis in tomato plants under continuous light, Photosynthetica, 2015, vol. 53, p. 389. https://doi.org/10.1007/s11099-015-0115-4

    Article  CAS  Google Scholar 

  27. Sysoeva, M.I., Shibaeva, T.G., Sherudilo, E.G., and Ikkonen, E.N., Control of continuous irradiation injury on tomato plants with a temperature drop, Acta Hort., 2012, vol. 956, p. 283. https://doi.org/10.17660/ActaHortic.2012.956.32

  28. Shibaeva, T.G. and Sherudilo, E.G., Immediate and delayed effects of diurnal temperature drops on growth and reproductive development of tomato plants grown under continuous lighting, Russ. J. Plant Physiol., 2015, vol. 62, p. 328. https://doi.org/10.1134/S1021443715030176

    Article  CAS  Google Scholar 

  29. Lichtenthaler, H.K. and Wellburn, A.R., Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochem. Soc., 1983, vol. 603, p. 591. https://doi.org/10.1042/bst0110591

    Article  Google Scholar 

  30. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  31. Shibaeva, T.G., Markovskaya, E.F., Ikkonen, E.N., and Sherudilo, E.G., Control of continuous irradiation injury on tomato plants with a temperature drop: effectiveness evaluation, Russ. Agric. Sci., 2015, vol. 41, p. 419. https://doi.org/10.3103/S1068367415060221

    Article  Google Scholar 

  32. Omura, Y., Oshima, Y., Kubota, C., and Kozai, T., Treatments of fluctuating temperature under continuous light enabled the production of quality transplants of tomato, eggplant and sweet pepper, Hort. Sci., 2001, vol. 36, vol. 3, p. 586.

  33. Sysoeva, M.I., Shibaeva, T.G., and Sherudilo, E.G., Method of growing tomato seedlings in protected ground, Bull. Fed. sluzhby po int. sobsbvennosti, patentam I tov. znakam, 2013, vol. 28.

  34. Shibaeva, T.G., Sherudilo, E.G., Ikkonen, E.N., and Titov, A.F., The effect of short-term daily temperature drops on the activity of antioxidant enzymes, Tr. KarSC RAS. Ser.: Exp. biol., 2015, vol. 12, p. 107. https://doi.org/10.17076/eb241

    Article  Google Scholar 

  35. Ikkonen, E.N., Sherudilo, E.G., Shibaeva, T.G., and Grabelnykh, O.I., Salicylhydroxamic acid-resistant and sensitive components of respiration in chilling-sensitive plants subjected to a daily short-term temperature drop, Russ. J. Plant Physiol., 2020, vol. 67, p. 60. https://doi.org/10.1134/S1021443719050066

    Article  CAS  Google Scholar 

  36. Garmash, E.V., Mitochondrial respiration of the photosynthesizing cell, Russ. J. Plant Physiol., 2016, vol. 63, p. 13. https://doi.org/10.1134/S1021443715060072

    Article  CAS  Google Scholar 

  37. Ikkonen, E.N., Shibaeva, T.G., Sherudilo, E.G., and Titov, A.F., Influence of DROP effects on the efficiency of light energy use in the process of photosynthesis in cucumber plants, Tr. KarSC RAS. Ser.: Exp. biol., 2016, vol. 6, p. 49. https://doi.org/10.17076/eb319

    Article  Google Scholar 

  38. Klimov, S.V., Astakhova, N.V., and Trunova, T.I., Relationship between plant cold tolerance, photosynthesis and ultrastructural modifications of cells and chloroplasts, Russ. J. Plant Physiol., 1997, vol. 44, p. 759.

    CAS  Google Scholar 

  39. Markovskaya, E.F., Sherudilo, E.G., Ripatti, P.O., and Sysoeva, M.I., The role of lipids in the resistance of cucumber cotyledon leaves to the constant and short-term periodic action of low hardening temperature, Tr. KarSC RAS. Ser.: biol.,. 2009, vol. 3, p. 67.

  40. Klimov, S.V., Trunova, T.I., and Mokronosov, A.T., The mechanism of plant adaptation to adverse environmental conditions through changes in donor-acceptor relationships, Russ. J. Plant Physiol., 1990, vol. 37, p. 1024.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The use of scientific equipment of the Center for Collective Use of the Federal Research Center Karelian Scientific Center of the Russian Academy of Sciences is acknowledged.

Funding

This work was supported by the state task to the Karelian Research Center of the Russian Academy of Sciences (FMEN-2022-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ikkonen.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Bulychev

Abbreviations: Car—carotenoids; CL—continuous lighting,; Chl—chlorophyll; T-drop—daily short-term temperature drops; LHC—light-harvesting complex; LMA—leaf mass per area; PAR—photosynthetically active radiation; PP—photoperiod; PSII—photosystem II; PSA—photosynthetic apparatus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikkonen, E.N., Shibaeva, T.G., Sherudilo, E.G. et al. Daily Short-Term Temperature Drops Can Alleviate the Negative Effect of Continuous Lighting on the Photosynthetic Apparatus in Plants. Russ J Plant Physiol 70, 79 (2023). https://doi.org/10.1134/S1021443723700140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700140

Keywords:

Navigation