Skip to main content
Log in

Chymotrypsin-like activity and subunit composition of proteasomes in human cancers

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The activity of the proteasome, a polyfunctional enzymatic complex, is known to undergo changes during cancer development. This phenomenon is probably caused by the changes in subunit composition of proteasomes. In this work, we studied the chymotrypsin-like activity of proteasomes; their subunit composition; and their association in breast cancer, head and neck squamous cell carcinoma, endometrial cancer, renal cancer, bladder cancer, stomach cancer, and colorectal cancer. The increase in proteasome activity was revealed in most cancer tissues compared with adjacent tissues, except for the renal cell carcinoma. Changes in proteasome activity in cancer tissues compared with correspondent normal tissues observed in combination with an increased expression of immune subunits and/or proteasome activator PA28β associated with activity of 20S proteasome. In breast cancer, head and neck squamous cell carcinoma, bladder cancer, stomach cancer, and colorectal cancer, we additionally found the higher expression of Rpt6 subunit of the 19S-subunit in 26S proteasome. Correlations between chymotrypsin-like proteasome activity and subunit expressions were found in human cancer tissues. Thus, we suggest that proteasome activation and changes in its subunit composition play an important role in cancer pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDTA:

ethylenediaminetetraacetate

BrC:

breast cancer

EC:

endothelial cancer

KC:

kidney cancer

BlC:

bladder cancer

SC:

stomach cancer

CRC:

colorectal cancer

HNC:

head and neck cancer

References

  1. Rotanova T.V., Mel’nikov E.E. 2008. ATP-dependent proteases and proteolytic complexes involved in intracellular protein degradation. Biomed. Khim. 54(5), 512–530.

    CAS  PubMed  Google Scholar 

  2. Sharova N., Zakharova L. 2008. Multiple forms of proteasomes and their role in tumor fate. Recent Patents on Endocr. Metab. Immune Drug Discovery. 2, 152–161.

    Article  CAS  Google Scholar 

  3. Mani A., Gelmann E.P. 2005.The ubiquitin-proteasome pathway and its role in cancer. J. Clin. Oncol. 23(21), 4776–4789.

    Article  CAS  PubMed  Google Scholar 

  4. Tu Y., Chen C., Pan J., Xu J., Zhou Z.G., Wang C.Y. 2012. The ubiquitin-proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tuorigenesis. Int. J. Clin. Exp. Pathol. 5, 726–738.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Tanaka K. 2009. The proteasome: Overview of structure and function. Proc. Jpn. Acad. Ser. B. 85, 12–36.

    Article  CAS  Google Scholar 

  6. Lorch J.H., Tomas T.O., Schmoll H. 2007. Bortezomib inhibits cell-cell adhesion and cell migration and enhances epidermal growth factor receptor inhibitor-induced cell death in squamous cell cancer. Cancer Res. 67, 1–9.

    Article  Google Scholar 

  7. Spirina L.V., Yunusova N.V., Kondakova I.V., Kolomiets L.A., Koval V.D., Chernyshova A.L., Shpileva O.V. 2012. Association of frowth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer. Mol. Biol.Rep. 39(9), 8655–8662.

    Article  CAS  PubMed  Google Scholar 

  8. Spirina L.V., Kondakova I.V., Choinzonov E.L., Chigevskaya S.Y., Shishkin D.A., Kulbakin D.Y. 2013. Expression of vascular endothelial growth factor and transctiption factors HIF-1, NF-κB expression in squamous cell carcinoma of head and neck: Association with proteasome and calpain activities. J. Cancer Res. Clin. Oncol. 139, 625–633.

    Article  CAS  PubMed  Google Scholar 

  9. Spirina L.V., Bochkareva N.V., Kondakova I.V., Kolomiets L.A., Shashova E.E., Koval’ V.D., Chernyshova A.L., Asadchikova O.N. 2012. Regulation of insulin-like growth NF-κB proteasome system in endometrial cancer. Mol. Biol. (Moscow). 46, 407–413.

    Article  CAS  Google Scholar 

  10. Sorokin A.V., Kim E.R., Ovchinnikov L.P. 2009. The proteasomal system of protein degradation and processing. Usp. Biol. Khim. 49, 3–76.

    Google Scholar 

  11. Sharova N.P., Astakhova T.M., Karpova Ya.D., Abaturova S.B., Lyupina Yu.V., Bogomyakova Yu.V., Abramova E.B., Erokhov P.A. 2011. Multiple forms of proteasomes as objects dor developing new antitumor drugs. Onkokhirurgiya. 3(2), 37–42.

    Google Scholar 

  12. Boes B., Hengel H., Ruppert T., Multhaup G., Koszinowski U.H., Kloetzel P.M. 1994. Interferon γ stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J. Exp. Med. 179. 901-909.

  13. Li C., Kiran M. 2005 Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res. 65, 5599–5606.

    Article  Google Scholar 

  14. Arlt A., Bauer I., Schafmayer C., Tepel J., Müerköster S.S., Brosch M., Röder C., Kalthoff H., Hampe J., Moyer M.P., Fölsch U.R., Schäfer H. 2009. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene. 28, 3983–3996.

    Article  CAS  PubMed  Google Scholar 

  15. Spirina L.V., Kondakova I.V., Usynin E.A., Kolomiets L.A., Vintizenko S.I., Bochkareva N.V., Chernyshova A.L. 2009. Proteasome activity in malignant tumors of different localizations, Sib. Onkol. Zh. 5, 43–48.

    Google Scholar 

  16. Kondakova I.V., Spirina L.V., Shashova E.E., Koval’ V.D., Kolomiets L.A., Chernyshova A.L., Slonimskaya E.M. 2012. Proteasome activity in tumors of the female reproductive system. Russ. J. Bioorg. Chem. 38(1), 89–92.

    Article  CAS  Google Scholar 

  17. Fuchs D., Berges C., Opelz G., Daniel V., Naujokat C.J. 2008. Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. Cell Biochem. 103, 270–283.

    Article  CAS  Google Scholar 

  18. Almond J.B., Cohen G.M. 2002. The proteasome: A novel target for cancer chemotherapy. Leukemia. 16(4), 433–443.

    Article  CAS  PubMed  Google Scholar 

  19. Driscoll J.J., Minter A., Driscoll D.A., Burris J.L. 2011. The ubiquitin-proteasome protein degradation pathway as a therapeutic strategy in the treatment of solid tumor malignancies. Anticancer Agents Med. Chem. 11(2), 242–246.

    Article  CAS  PubMed  Google Scholar 

  20. Xie Y. 2010. Structure, assembly and homeostatic regulation of the 26S proteasome. J. Mol. Cell Biol. 2(6), 308–317.

    Article  CAS  PubMed  Google Scholar 

  21. Xu H., Ju D., Jarois T., Xie Y. 2008. Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Res. Treat. 107(2), 267–274.

    Article  CAS  PubMed  Google Scholar 

  22. Maxwell P.H., Wiesener M.S., Chang G.W. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399, 271–275.

    Article  CAS  PubMed  Google Scholar 

  23. Gidehithlu K.P., Pegoraro A.A., Dunea G. 2004. Degradation of albumin by renal proximal tubule cells and the subsequent fate of its fragments. Kidney International. 65, 2113–2122.

    Article  Google Scholar 

  24. Macconi D., Chiabrando C., Schiarea S. 2009. Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J. Am. Soc. Nephrol. 20(1), 123–130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zakharova L.A., Khegai I.I., Sharova N.P., Melnikova V.I., Karpova Y.D., Astakhova T.M., Popova N.A., Ivanova L.N. 2011. Pattern of MHC class I and immune proteasome expression in Walker 256 tumor during growth and regression in Brattleboro rats with the hereditary defect of arginine-vasopressin synthesis. Cell Immunol. 271(2), 385–391.

    Article  CAS  PubMed  Google Scholar 

  26. Ben-Shahar S., Komlosh A., Nadav E., Shaked I., Ziv T., Admon A., DeMartino G.N., Reiss Y. 1999. 26S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate. J. Biol. Chem. 274(31), 21963–21972.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kondakova.

Additional information

Original Russian Text © I.V. Kondakova, L.V. Spirina, V.D. Koval, E.E. Shashova, E.L. Choinzonov, E.V. Ivanova, L.A. Kolomiets, A.L. Chernyshova, E.M. Slonimskaya, E.A. Usynin, S.G. Afanas’ev, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 3, pp. 444–451.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondakova, I.V., Spirina, L.V., Koval, V.D. et al. Chymotrypsin-like activity and subunit composition of proteasomes in human cancers. Mol Biol 48, 384–389 (2014). https://doi.org/10.1134/S002689331403011X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331403011X

Keywords

Navigation