Skip to main content
Log in

SYNTHESIS AND STRUCTURE OF TRIS(4-FLUOROPHENYL)ANTIMONY (4-FC6H4)3SbX2 DERIVATIVES (X = OC6H3F2-2,4, OC(O)C6H3F2-2,5, OC(O)C≡CPh)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Derivatives of tris(4-fluorophenyl)antimony (4-FC6H4)3Sb(OC6H3F2-2,4)2 (1), (4-FC6H4)3Sb[OC(O)C6H3F2-2,5]2 (2) and (4-FC6H4)3Sb[OC(O)C≡CPh]2 (3) are prepared by oxidative addition reaction from triarylantimony (4-FC6H4)3Sb and 2,4-difluorophenol, 2,5-difluorobenzoic acid, and phenylpropiolic acid, respectively, in the presence of tert-butyl peroxide. According to the XRD data, the antimony atoms have a distorted trigonal-bipyramidal coordination with oxygen atoms of aryloxide and carboxylate ligands in axial positions. The OSbO axial angles are 174.7(2)° (1), 175.78(6)° (2), and 176.02(7)° (3). The Sb–C bonds in 1 are longer than Sb–O distances (2.073(4) Å) and are equal to 2.114(9) Å, 2.099(6) Å. The similar distances in 2 and 3 are 2.115(2)-2.124(2) Å and 2.1341(17) Å, 2.1222(18) Å; 2.079(2)-2.103(3) Å and 2.171(3) Å, 2.138(2) Å, respectively. The antimony atom deviates from the equatorial plane (C3) by 0.057 Å and 0.013 Å in 2 and 3, respectively, and lies in this plane in 1. Compounds 2 and 3 exhibit intramolecular interactions between the metal atom and the carbonyl oxygen atoms. The Sb⋯O=C distances are 2.845(2) Å, 2.969(2) Å (2) and 2.909(3) Å, 2.947(3) Å (3), which is much shorter than the sum of the van der Waals radii of Sb and O (3.58 Å). The spatial structure of crystals 1-3 is due to the presence of hydrogen bonds C=O⋯H, O⋯H, F⋯H, and CH⋯π-interactions. The structure of crystals 3 exhibits π–π interactions between the alkynyl group and the benzene ring of the carboxylate ligand of neighboring molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. R. Mushtaq, M. K. Rauf, M. Bond, A. Badshah, M. I. Ali, A. Nadhman, M. Yasinzai, and M. N. Tahir. Appl. Organomet. Chem., 2016, 30, 465. https://doi.org/10.1002/aoc.3456

    Article  CAS  Google Scholar 

  2. L. Saleem, A. A. Altaf, A. Badshah, M. K. Rauf, A. Waseem, M. Danish, S. S. Azam, M. N. Arshad, A. M. Asiri, S. Ahmad, and R. Gul. Inorg. Chim. Acta, 2018, 474, 148. https://doi.org/10.1016/j.ica.2018.01.036

    Article  CAS  Google Scholar 

  3. A. Islam, J. G. Da Silva, F. M. Berbet, S. M. Da Silva, B. L. Rodrigues, H. Beraldo, M. N. Melo, F. Frézard, and C. Demicheli. Molecules, 2014, 19, 6009. https://doi.org/10.3390/molecules19056009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R. Mushtaq, M. K. Rauf, M. Bolte, A. Nadhman, A. Badshah, M. N. Tahir, M. Yasinzai, and K. M. Khan. Appl. Organomet. Chem., 2017, 31, e3606. https://doi.org/10.1002/aoc.3606

    Article  CAS  Google Scholar 

  5. T. Iftikhar, M. K. Rauf, S. Sarwar, A. Badshah., D. Waseem, M. N. Tahir, A. Khan, K. M. Khan, and G. M. Khan. J. Organomet. Chem., 2017, 851, 89. https://doi.org/10.1016/j.jorganchem.2017.09.002

    Article  CAS  Google Scholar 

  6. A. Islam, B. L. Rodrigues, I. M. Marzano, E. C. Perreira-Maia, D. Dittz, M. T. P. Lopes, M. Ishfaq, F. Frézard, and C. Demicheli. Eur. J. Med. Chem., 2016, 109, 254. https://doi.org/10.1016/j.ejmech.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  7. F. Wang, H. Yin, C. Yue, S. Cheng, and M. Hong. J. Organomet. Chem., 2013, 738, 35. https://doi.org/10.1016/j.jorganchem.2013.03.046

    Article  CAS  Google Scholar 

  8. R. Kather, T. Svoboda, M. Wehrhahn, E. Rychagova, E. Lork, L. Dostál, S. Ketkov, and J. Beckmann. Chem. Commun., 2015, 51, 5932. https://doi.org/10.1039/C5CC00738K

    Article  CAS  Google Scholar 

  9. S. K. Hadjikakou, I. I. Ozturk, C. N. Banti, N. Kourkoumelis, and N. Hadjiliadis. J. Inorg. Biochem., 2015, 153, 293. https://doi.org/10.1016/j.jinorgbio.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  10. M. I. Ali, M. K. Rauf, A. Badshah, I. Kumar, C. M. Forsyth, P. C. Junk, L. Kedzierski, and P. C. Andrews. Dalton Trans., 2013, 42, 16733. https://doi.org/10.1039/c3dt51382c

    Article  CAS  PubMed  Google Scholar 

  11. J. Jiang, H. Yin, D. Wang, Z. Han, F. Wang, S. Cheng, and M. Hong. Dalton Trans., 2013, 42, 8563. https://doi.org/10.1039/c3dt50221j

    Article  CAS  PubMed  Google Scholar 

  12. L. Yu, Y.-Q. Ma, G.-C. Wang, and J.-S. Li. Heteroatom Chem., 2004, 15, 32. https://doi.org/10.1002/hc.10208

    Article  CAS  Google Scholar 

  13. L. Yu, Y.-Q. Ma, R.-C. Liu, G.-C. Wang, J.-S. Li, G.-H. Du, and J.-J. Hu. Polyhedron, 2004, 23, 823. https://doi.org/10.1016/j.poly.2003.12.002

    Article  CAS  Google Scholar 

  14. T. C. Thepe, S. J. Richard, R. J. Garascia, M. A. Selvoski, and A. N. Patel. Ohio J. Sci., 1977, 77, 134.

  15. V. V. Sharutin, A. I. Poddelsky, and O. K. Sharutina. Russ. J. Coord. Chem., 2020, 46, 663. https://doi.org/10.1134/S1070328420100012

    Article  CAS  Google Scholar 

  16. G. Ferguson, B. Kaitner, C. Glidewell, and S. Smith. J. Organomet. Chem., 1991, 419, 283. https://doi.org/10.1016/0022-328X(91)80241-B

    Article  CAS  Google Scholar 

  17. V. V. Sharutin, O. K. Sharutina, and A. N. Efremov. Russ. J. Coord. Chem., 2017, 43, 565. https://doi.org/10.1134/S1070328417090081

    Article  CAS  Google Scholar 

  18. V. V. Sharutin, O. K. Sharutina, and A. N. Efremov. Russ. J. Coord. Chem., 2016, 42, 737.

    Article  CAS  Google Scholar 

  19. K. A. Kocheshkov, A. P. Skoldinov, and N. N. Zemlyansky. Metody elementoorganicheskoi khimii. Surma, vismut (Methods of the Organometallic Chemistry. Antimony, Bismuth). Moscow: Nauka, 1976.

  20. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Madison, Wisconsin, USA: Bruker AXS Inc., 1998.

  21. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Madison, Wisconsin, USA: Bruker AXS Inc., 1998.

  22. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  23. A. V. Vasilev, E. V. Grinenko, A. O. Schukin, and T. G. Fedulina. Infrakrasnaya spektroskopiya organicheskikh i prirodnykh soedinenii (Infrared spectroscopy of organic and natural compounds). SPb: SPbFTU, 2007. [In Russian]

  24. B. N. Tarasevich. IK spektry osnovnykh klassov organicheskikh soedinenii (IR Spectra of the Main Classes of Organic Compounds). Moscow: MGU, 2012.

  25. Spectral Database for Organic Compounds (SDBS). Release 2021. Japan: National Institute of Advanced Industrial Science and Technology, 2021.

  26. Cambridge Crystallographic Database. Release 2020. Cambridge, UK: University of Cambridge, 2020.

  27. V. V. Sharutin, O. K. Sharutina, A. N. Efremov, and P. A. Slepukhin. Russ. J. Inorg. Chem., 2020, 65, 992. https://doi.org/10.1134/S0036023620010155

    Article  CAS  Google Scholar 

  28. V. V. Sharutin and O. K. Sharutina. Russ. Chem. Bull., 2017, 66, 707. https://doi.org/10.1007/s11172-017-1796-6

    Article  CAS  Google Scholar 

  29. S. S. Batsanov. Russ. J. Inorg. Chem., 1991, 36, 1694.

Download references

Funding

The reported study was funded by RFBR, project number 20-33-90099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Efremov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 3, pp. 261-270.https://doi.org/10.26902/JSC_id88696

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, A.N., Sharutin, V.V. & Sharutina, O.K. SYNTHESIS AND STRUCTURE OF TRIS(4-FLUOROPHENYL)ANTIMONY (4-FC6H4)3SbX2 DERIVATIVES (X = OC6H3F2-2,4, OC(O)C6H3F2-2,5, OC(O)C≡CPh). J Struct Chem 63, 344–352 (2022). https://doi.org/10.1134/S0022476622030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622030039

Keywords

Navigation