Skip to main content
Log in

Calcium Sparks in Cardiac Pacemaker Cells at Different Temperatures in silico

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Temperature effects play an important role in the functioning of the cardiac cell. In this work we simulated the influence of temperature on calcium dynamics properties such as spontaneous calcium release frequency and amplitude while taking into account the experimental data on the response of various protein complexes to the temperature shift. We investigated temperature effects of protein complexes involved in calcium dynamics: calsequestrin and sarco-endoplasmic reticulum ATPase. The contribution of each of them to the temperature effect was explored. Furthermore, we introduced a novel approach of modelling the ryanodine receptors (RyRs) temperature effects and the contribution of RyRs thermal fluctuations to the whole cell temperature dependence was evaluated. The main result of our research is a generalization of the facts of the temperature influence on various calcium cycling proteins in the cardiac cell. Our main assumption is that calsequestrin makes the main contribution to the increase of calcium release frequency and in the increase of calcium concentration in sarcoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

CQ:

casequestrin

CCP:

calcium cycling protein

CM:

calmodulin

CRU:

calcium release unit

ECM:

electron-conformational model

jSR:

junctional SR

LCC:

L-type calcium channels

nSR:

SR network

RU:

release unit

RyR:

ryanodine receptor

SERCA:

sarcoplasmic reticulum Ca2+ ATPase

SR:

sarcoplasmic reticulum

SS:

subspace

TC:

troponin C

REFERENCES

  1. Cheng H, Lederer W, Cannell M (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262: 740–744. https://doi.org/10.1126/science.8235594

    Article  CAS  PubMed  Google Scholar 

  2. Ferrier GR, Robin H, Susan E, et al. (2003) Calcium sparks in mouse ventricular myocytes at physiological temperature. Am J Physiol-Heart Circ Physiol 285: H1495–H1505. https://doi.org/10.1152/ajpheart.00802.2002

  3. Fu Y, Zhang GQ, Hao XM, Wu CH, Chai Z, Wang SQ (2005) Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes. Biophys J 89: 2533–2541. https://doi.org/10.1529/biophysj.105.067074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haverinen J, Vornanen М (2007) Temperature acclimation modifies sinoatrial pacemaker mechanism of the rainbow trout heart. Am J Physiol Regul Integr Comp Physiol 292: R1023–R1032. https://doi.org/10.1152/ajpregu.00432.2006

    Article  CAS  PubMed  Google Scholar 

  5. Landeira-Fernandez AM, Castilho PC, Block BA (2012) Thermal dependence of cardiac SR Ca2+-ATPase from fish and mammals. J Therm Biol 37: 217–223. https://doi.org/10.1016/j.jtherbio.2012.01.003

    Article  CAS  Google Scholar 

  6. Fowler C, Huggins JP, Hall C, Restall CJ, Chapman D (1989) The effects of calcium, temperature and phospholamban phosphorylation on the dynamics of the calcium-stimulated ATPase of canine cardiac sarcoplasmic reticulum. Biochim Biophys Acta Biomembr 980: 348-356. https://doi.org/10.1016/0005-2736(89)90323-4

    Article  CAS  Google Scholar 

  7. Sitsapesan R, Montgomery R, MacLeod K, Williams A (1991) Sheep cardiac sarcoplasmic reticulum calcium-release channels: modification of conductance and gating by temperature. J Physiol 434: 469–488. https://doi.org/10.1113/jphysiol.1991.sp018481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meissner G, Pasek DA, Yamaguchi N, Ramachandran S, Dokholyan NV, Tripathy A (2009) Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels. Proteins 74: 207–211. https://doi.org/10.1002/prot.22148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun Z, Wang L, Han L, Wang Y, Zhou Y, Li Q, Luo D (2021) Functional calsequestrin-1 is expressed in the heart and its deficiency is causally related to malignant hyperthermia-like arrhythmia. Circulation 144: 788–804. https://doi.org/10.1161/CIRCULATIONAHA.121.053255

    Article  CAS  PubMed  Google Scholar 

  10. Lakatta E, Maltsev V, Vinogradova T (2010) A coupled system of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 106: 659–673. https://doi.org/10.1161/CIRCRESAHA.109.206078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ryvkin A, Markov N (2018) Modeling of calcium sparks in heart cells. 2D calcium diffusion problem. In: 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), pp 107–110. https://doi.org/10.1109/USBEREIT.2018.8384562

    Chapter  Google Scholar 

  12. Moskvin A, Iaparov B, Ryvkin A, Solovyova O, Markhasin V (2015) Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating. JETP Lett 102: 62–68. https://doi.org/10.1134/S002136401513010X

    Article  CAS  Google Scholar 

  13. Keener JP, Sneyd J (1998) Mathematical physiology, vol 1. Springer. ISBN: 978-0-387-22706-1. https://doi.org/10.1007/b98841

    Book  Google Scholar 

  14. Knabner P, Angermann L (2003) Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Texts in Applied Mathematics, 1 ed. Springer-Verlag, New York. ISBN: 978-3-030-79385-2. https://doi.org/10.1007/978-3-030-79385-2

    Book  Google Scholar 

  15. Moskvin A, Iaparov B, Ryvkin A, Solovyova O (2016) The temperature effect on cardiac ryanodine receptor gating and conductance: Mathematical modeling. Biophysics 61: 614–621. https://doi.org/10.48550/arXiv.2109.05304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.R. contributed to the conception of the study, literature review, data acquisition, data processing and analysis, software development, drafting the manuscript, editing the final version of manuscript. N.M. contributed to the conception of the study, software development, data analysis, editing the final version of manuscript. V.Y. contributed to computer experiments, data processing and analysis, software development.

Corresponding author

Correspondence to A. M. Ryvkin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryvkin, A.M., Markov, N.S. & Yudenko, V. Calcium Sparks in Cardiac Pacemaker Cells at Different Temperatures in silico. J Evol Biochem Phys 58 (Suppl 1), S125–S133 (2022). https://doi.org/10.1134/S0022093022070134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022070134

Keywords:

Navigation