Skip to main content
Log in

Probe Microscopy in the Investigation of Ni/Cu and FeNi Magnetic Nanowires

  • NANOMATERIALS FOR FUNCTIONAL AND STRUCTURAL PURPOSES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Тhe work is devoted to studying the magnetic properties of one-dimensional nanostructures: nanowires (NWs). Two types of NWs are obtained by matrix synthesis and studied by probe microscopy. The combination of probe-microscopy modes makes it possible to determine the topography of the nanocrystals and the nature of their magnetization. The change in the magnetization during the application of an external magnetic field (varying in magnitude and direction) is investigated. It is shown that magnetization reversal in an external magnetic field depends on the relative position of the nanowire. Samples of the first type are Ni/Cu layered NWs: their magnetization reversal in an external magnetic field is studied and the magnitude of this field is determined. It is shown that the latter depends on the relative position and interaction of NWs with each other. For a single NW this is 4–5 mT, and for double NWs it is noticeably higher (12–15 mT). An agglomerate consisting of several interacting NWs is undergoes magnetization reversal in stages. The second type of samples are arrays of homogeneous NWs made of FeNi alloy located directly in the growth matrix. The field of magnetization reversal of isolated NWs in all cases is 7–14 mT. On the contrary, in groups of closely located NWs, the switching of magnetization occurs in stages. In this case, the range of switching fields depends on the density of NWs in the matrix and, in general, is much broader than for isolated NWs. In general, it is shown that the magnetic properties of NWs change significantly as the distance between them decreases: their magnetization reversal becomes more difficult, and various intermediate states appear, including those with opposite (antiferromagnetic) magnetization in neighboring NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. V. M. Anishchik, Nanomaterials and Nanotechnologies (Bel. Gos. Univ., Minsk, 2008) [in Russian].

    Google Scholar 

  2. A. A. Eliseev and A. V. Lukashin, Functional Nanomaterials (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  3. V. E. Borisenko, A. L. Danilyuk, and D. B. Migas, Spintronics (Laboratoriya Znanii, Moscow, 2017) [in Russian].

    Google Scholar 

  4. S. K. Chakarvarti and J. Vetter, Nucl. Instrum. Methods Phys. Res., Sect. B 62, 109 (1991). https://doi.org/10.1016/0168-583X(91)95936-8

    Article  Google Scholar 

  5. C. R. Martin, Science 266, 1961 (1994). https://doi.org/10.1126/science.266.5193.1961

    Article  CAS  PubMed  Google Scholar 

  6. J. C. Hulteen and C. R. Martin, J. Mater. Chem. 7, 1075 (1997). https://doi.org/10.1039/A700027H

    Article  CAS  Google Scholar 

  7. C. R. Martin, Chem. Mater. 8, 1739 (1996). https://doi.org/10.1021/CM960166S

    Article  CAS  Google Scholar 

  8. N. Lupu, Electrodeposited Nanowires and Their Applications (InTech, Croatia, 2010).

    Book  Google Scholar 

  9. M. Vazquez, Magnetic Nano- and Microwires: Design, Synthesis, Properties, and Applications (Woodhead, Amsterdam, 2015).

    Google Scholar 

  10. L. A. Rodriguez, C. Magen, E. Snoeck, et al., Appl. Phys. Lett. 102, 022418 (2013). https://doi.org/10.1063/1.4776709

    Article  CAS  Google Scholar 

  11. J. Cantu-Valle, I. Betancourt, J. E. Sanchez, et al., J. Appl. Phys. 118, 024302 (2015). https://doi.org/10.1063/1.4923745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. I. M. Andersen, L. A. Rodriguez, C. Bran, et al., ACS Nano 14, 1399 (2020). https://doi.org/10.1021/acsnano.9b07448

    Article  CAS  PubMed  Google Scholar 

  13. T. G. Sorop, C. Untiedt, F. Luis, et al., Phys. Rev. B 67, 014402 (2003). https://doi.org/10.1103/PhysRevB.67.014402

    Article  CAS  Google Scholar 

  14. T. Wang, Y. Wang, Y. Fu, et al., Nanotecnology 19, 455703 (2008). https://doi.org/10.1088/0957-4484/19/45/455703

    Article  CAS  Google Scholar 

  15. T. Wang, Y. Wang, Y. Fu, et al., Nanotecnology 20, 105707 (2009). https://doi.org/10.1088/0957-4484/20/10/105707

    Article  CAS  Google Scholar 

  16. A. S. Samardak, A. V. Ognev, A. Yu. Samardak, et al., J. Alloys Compd. 732, 683 (2018). https://doi.org/10.1016/J.JALLCOM.2017.10.258

    Article  CAS  Google Scholar 

  17. A. Yu. Samardak, Y. S. Jeon, V. Yu. Samardak, et al., Small 18, 2203555 (2022). https://doi.org/10.1002/smll.20220355

    Article  CAS  Google Scholar 

  18. O. M. Zhigalina, I. M. Doludenko, D. N. Khmelenin, et al., Crystallogr. Rep. 63, 480 (2018). https://doi.org/10.7868/S0023476118030165

    Article  CAS  Google Scholar 

  19. D. A. Bizyaev, D. R. Khairetdinova, D. L. Zagorskii, et al., Phys. Met. Metallogr. 124, 787 (2023). https://doi.org/10.31857/S0015323023600545

    Article  CAS  Google Scholar 

  20. D. A. Bizyaev, A. A. Bukharaev, R. I. Khaibullin, et al., Russ. Microelectron. 47, 187 (2018). https://doi.org/10.7868/S0544126918030055

    Article  CAS  Google Scholar 

  21. I. M. Doludenko, D. R. Khairetdinova, D. L. Zagorsky, et al., Bull. Russ. Acad. Sci. Phys. 87, 277–281 (2023). https://doi.org/10.3103/S1062873822701076

    Article  CAS  Google Scholar 

  22. V. L. Mironov and O. L. Ermolaeva, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 3, 840 (2009).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 22-22-00983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Zagorskiy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizyaev, D.A., Zagorskiy, D.L. & Khairetdinova, D.R. Probe Microscopy in the Investigation of Ni/Cu and FeNi Magnetic Nanowires. Nanotechnol Russia 18 (Suppl 2), S325–S334 (2023). https://doi.org/10.1134/S263516762360150X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762360150X

Navigation