Skip to main content
Log in

On the Sol-Gel Synthesis of Zinc-Oxide Semiconductor Powder for Varistor Structures

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The synthesis of a varistor powder based on ZnO is carried out with the further fabrication of a device structure within the framework of the sol-gel method. To monitor the processes occurring in the sol, the method of Fourier-transform infrared spectroscopy is used. Studies of the surface structure of the material are carried out using scanning electron microscopy. The constructed current–voltage characteristic of the varistor structure is nonlinear with a nonlinearity coefficient of 2.36. The use of the sol-gel method for the manufacture of devices of this type makes it possible to obtain a grain size of 0.25 μm and achieve a reduction in the sintering temperature to 900°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. S. Li, J. Li, W. Liu, et al., IEEE Electr. Insul. Mag. 31, 35 (2015). https://doi.org/10.1109/MEI.2015.7126072

    Article  Google Scholar 

  2. A. Rocks and V. Hinrichsen, in Proceedings of IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2007, p. 335 (2007). https://doi.org/10.1109/DEMPED.2007.4393117

  3. X. Zhang, Z. Yu, Z. Chen, et al., IEEE Trans. Ind. Electron. Control Instrum. 66, 7653 (2019). https://doi.org/10.1109/TIE.2018.2886787

    Article  Google Scholar 

  4. D. R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01793.x

    Article  CAS  Google Scholar 

  5. M. Matsuoka, Jpn. J. Appl. Phys. 10, 736 (1971). https://doi.org/10.1143/JJAP.10.736

    Article  CAS  Google Scholar 

  6. G. Blatter and F. Greuter, Semicond. Sci. Tec 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001

    Article  Google Scholar 

  7. G. E. Pike, MRS Proc. 5, 369 (1981). https://doi.org/10.1557/PROC-5-369

  8. S. Hamdelou, K. Guergouri, and L. Arab, App. Nanosci. 5, 817 (2015). https://doi.org/10.1007/s13204-014-0382-6

    Article  CAS  Google Scholar 

  9. P. Durán, J. Tartaj, and C. Moure, J. Am. Ceram. Soc. 86, 1326 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03470.x

    Article  Google Scholar 

  10. S. Anas, R. Metz, M. A. Sanoj, et al., Ceram. Int. 36, 2351 (2010). https://doi.org/10.1016/j.ceramint.2010.07.017

    Article  CAS  Google Scholar 

  11. S. C. Pillai, J. M. Kelly, R. Ramesh, and D. E. McCormack, J. Mater. Chem. 1, 3268 (2013). https://doi.org/10.1039/C3TC00575E

    Article  CAS  Google Scholar 

  12. N. Riahi-Noori, R. Sarraf-Mamoory, P. Alizadeh, and A. Mehdikhani, J. Ceram. Proc. Res. 9, 246 (2008).

    Google Scholar 

  13. L. S. Macary, M. L. Kahn, C. Estournes, et al., Adv. Funct. Mater. 19, 1775–1783 (2009). https://doi.org/10.1002/adfm.200801067

    Article  CAS  Google Scholar 

  14. H. Bidadi, A. Olad, M. Parhizkar, et al., Vacuum 87, 50 (2013). https://doi.org/10.1016/j.vacuum.2012.07.003

    Article  CAS  Google Scholar 

  15. M. J. Maria, S. Balanand, S. Anas, et al., Mater. Design 92, 387 (2016). https://doi.org/10.1016/j.matdes.2015.12.053

    Article  CAS  Google Scholar 

  16. L. Wang, G. Tang, and Z. K. Xu, Ceram. Int. 35, 487 (2009). https://doi.org/10.1016/j.ceramint.2008.01.011

    Article  CAS  Google Scholar 

  17. L. H. Cheng, L. Y. Zheng, L. Meng, et al., Ceram. Int. 38, 457 (2012). https://doi.org/10.1016/j.ceramint.2011.05.03

    Article  Google Scholar 

  18. N. Rochman, T. Siswanto, and P. R. Akwalia, J. Phys.: Conf. Ser. 853, 012041 (2017). https://doi.org/10.1088/1742-6596/853/1/012041

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the rector’s grant of Penza State University and the Ministry of Science and Higher Education of the Russian Federation (project MD-172.2021.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Pronin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, I.A., Pronin, I.A. & Kitaev, A.S. On the Sol-Gel Synthesis of Zinc-Oxide Semiconductor Powder for Varistor Structures. Nanotechnol Russia 18 (Suppl 1), S175–S178 (2023). https://doi.org/10.1134/S2635167623600748

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623600748

Navigation