Skip to main content
Log in

Obtaining ZnO-based Transparent Conductive Films with Improved Functional Properties

  • NANOMATERIALS FOR FUNCTIONAL AND STRUCTURAL PURPOSES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

A comparative study of the growth process of transparent conductive films based on Ga-doped ZnO is carried out during the magnetron sputtering of a traditional ZnO:Ga ceramic target and ZnO:Ga–Zn composite targets with a Zn metal phase content of 10 to 30 wt %. The influence of the composition of composite targets and substrate temperature on the functional characteristics and microstructure of transparent conductive films is studied. It is demonstrated that an increase in the zinc content in the composition of the composite target when the substrate is heated to 200°C and above helps to improve the structural perfection of ZnO:Ga films and reduce their resistivity due to an increase in the concentration of charge carriers against the background of a high value of Hall mobility. All ZnO:Ga films obtained by sputtering composite targets at a substrate temperature of 200°C and above demonstrate high optical transmittance in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. B. Lewis and D. Paine, MRS Bull. 25, 22 (2000). https://doi.org/10.1557/mrs2000.147

    Article  CAS  Google Scholar 

  2. U. Betz, M. Kharrazi Olsson, J. Marthy, et al., Surf. Coat. Technol. 200, 5751 (2006). https://doi.org/10.1016/j.surfcoat.2005.08.144

    Article  CAS  Google Scholar 

  3. K. Portillo-Cortez, S. R. Islas, A. Serrano-Lázaro, et al., Appl. Surf. Sci. Adv. 9, 100255 (2022). https://doi.org/10.1016/j.apsadv.2022.100255

  4. A. I. Hofmann, E. Cloutet, and G. Hadziioannou, Adv. Electron. Mater. 4, 1700412 (2018). https://doi.org/10.1002/aelm.201700412

  5. P. Lippens, M. Büchel, D. Chiu, et al., Thin Solid Films 532, 94 (2013). https://doi.org/10.1016/j.tsf.2012.12.116

    Article  CAS  ADS  Google Scholar 

  6. P. Misra, V. Ganeshan, and N. Agrawal, J. Alloys Compd. 725, 60 (2017). https://doi.org/10.1016/j.jallcom.2017.07.121

    Article  CAS  Google Scholar 

  7. H. Liu, X. Wang, M. Li, et al., Ceram. Int. 46, 11978 (2020). https://doi.org/10.1016/j.ceramint.2020.01.237

    Article  CAS  Google Scholar 

  8. A. K. Akhmedov, A. Sh. Asvarov, et al., Surface: X‑Ray, Synchrotron and Neutron Studies 15, 76–80 (2021). https://doi.org/10.31857/S1028096021010027

    Article  Google Scholar 

  9. A. Sh. Asvarov, A. K. Akhmedov, E. K. Murliev, et al., Prikl. Fiz., No. 3, 73 (2022). https://doi.org/10.51368/1996-0948-2022-3-73-78

  10. A. K. Akhmedov, A. Kh. Abduev, A. Sh. Asvarov, et al., Nanotechnologies in Russia 15, 741–746 (2020). https://doi.org/10.1134/S1992722320060023

    Article  CAS  Google Scholar 

  11. V. V. Brus, Z. D. Kovalyuk, and P. D. Maryanchuk, Tech. Phys. 57, 1148–1151 (2012).

    Article  CAS  Google Scholar 

  12. T. P. Rao and M. C. S. Kumar, J. Alloys Compd. 506, 788 (2010). https://doi.org/10.1016/j.jallcom.2010.07.071

    Article  CAS  Google Scholar 

  13. R. A. Afre, N. Sharma, M. Sharon, et al., Rev. Adv. Mater. Sci. 53, 79 (2018).

    Article  CAS  Google Scholar 

  14. J. I. Langford and A. J. C. Wilson, J. Appl. Crystallogr. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  ADS  Google Scholar 

  15. L.-J. Meng, J. Gao, and R. A. Silva, et al., Thin Solid Films 516, 5454 (2008).

    Article  CAS  ADS  Google Scholar 

Download references

Funding

The work was carried out within the framework of state assignments of the Dagestan Federal Research Center, Russian Academy of Sciences, and the Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences. The work was carried out using equipment of the Shared Use Center of the Federal Scientific Research Center “Crystallography and Photonics” and the Analytical Center for Collective Use of the Dagestan Federal Research Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Akhmedov or A. Sh. Asvarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmedov, A.K., Asvarov, A.S., Muslimov, A.E. et al. Obtaining ZnO-based Transparent Conductive Films with Improved Functional Properties. Nanotechnol Russia 18, 865–871 (2023). https://doi.org/10.1134/S2635167623600268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623600268

Navigation