Skip to main content
Log in

On the Stable Operation of a Membraneless Microbial Fuel Cell for More Than One Hundred Days

  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript


The development of alternative energy sources is one of the most important areas of modern science. The processes of energy generation are studied in a membraneless mediatorless microbial fuel cell fueled by the Gluconobacter oxydans microorganism using synthetic wastewater with phototrophic Chlorella vulgaris microalgae in the cathode chamber. The operation of the fuel cell is compared with different catholytes, including microalgae with and without illumination, a nutrient medium for growing microalgae, and a K-phosphate buffer. This microbial fuel cell shows stable operation with a slight decrease in power over 113 days of the experiment. This result is due to the formation of biofilms and is confirmed by scanning-electron-microscopy images. Thus, the studied microbial fuel cell is promising for further study in the field of wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.


  1. R. G. Vasilov, A. N. Reshetilov, and A. I. Shestakov, Priroda No. 12, 65 (2013).

  2. E. V. Kuz’micheva, V. A. Reshetov, I. A. Kazarinov, and O. V. Ignatov, Elektrokhim. Energetika 7, 33 (2007).

    Google Scholar 

  3. M. Ghasemi, W. R. Wan Daud, M. Ismail, et al., Int. J. Hydrogen Energy 38, 5480 (2012).

    Article  CAS  Google Scholar 

  4. O. A. Barkhatova, P. A. Zhuravlev, G. O. Zhdanova, et al., in Proceedings of the Conference on Modern Trends in and Prospects for the Development of Hydrometeorology in Russia” (Irkutsk Gos. Univ., Irkutsk, 2018), p. 226

  5. A. Tardast, M. Rahimnejad, G. Najafpour, et al., Int. J. Environ. Eng. 3, 1 (2012).

    Article  CAS  Google Scholar 

  6. Yu. V. Plekhanova, S. E. Tarasov, A. G. Bykov, et al., Nanotechnol. Russ. 13, 531 (2018).

    Article  CAS  Google Scholar 

  7. A. N. Reshetilov, Yu. V. Plekhanova, S. E. Tarasov, et al., Appl. Biochem. Microbiol. 53, 123 (2017).

    Article  CAS  Google Scholar 

  8. A. A. Yaqoob, M. N. M. Ibrahim, M. Rafatullah, et al., Materials 13, 2078 (2020).

    Article  CAS  Google Scholar 

  9. K. K. Jaiswal, V. Kumar, M. S. Vlaskin, et al., J. Water Process. Eng. 38, 101549 (2020).

    Article  Google Scholar 

  10. M. V. Vishnevskaya, Yu. M. Parunova, P. M. Gotovtsev, and R. G. Vasilov, Vest. Biotekhnol. Fiz.-Khim. Biol. 15, 17 (2019).

    Google Scholar 

  11. F. Fischer, Renew. Sustainable Energy Rev. 90, 16 (2018).

    Article  CAS  Google Scholar 

  12. E. Antolini, J. Environ. Chem. Eng. 7, 103241 (2019).

    Article  CAS  Google Scholar 

  13. M. Taha Amen, A. S. Yasin, M. I. Hegazy, et al., R. Soc. Open Sci. 8, 210996 (2021).

    Article  Google Scholar 

  14. V. G. Gude, J. Clean. Prod. 122, 287 (2016).

    Article  CAS  Google Scholar 

  15. O. N. Ponamoreva, Estestv. Nauki 1, 138 (2009).

    Google Scholar 

  16. A. Somov, P. Gotovtsev, A. Dyakov, et al., in Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (IEEE, 2018), p. 802.

  17. A. N. Reshetilov, Yu. V. Plekhanova, S. V. Tarasov, et al., Prikl. Biokhim. Biotekhnol. 53, 115 (2017).

    Article  Google Scholar 

  18. S. V. Alferov, P. R. Minaicheva, V. A. Arlyapov, et al., Prikl. Biokhim. Biotekhnol. 50, 570 (2014).

    Article  CAS  Google Scholar 

  19. I. Vostiar, E. Ferapontova, and L. Gorton, Electrochem. Commun. 6, 621 (2004).

    Article  CAS  Google Scholar 

  20. K.-L. Yeh and J.-Sh. Chang, Bioresour. Technol. 105, 120 (2012).

    Article  CAS  Google Scholar 

  21. J. Salgueiro, L. Pérez, R. Maceiras, et al., Int. J. Environ. Res. 12, 765 (2018).

    Article  CAS  Google Scholar 

  22. M. S. Konovalov, E. Yu. Konovalova, I. N. Egorova, et al., Izv. Vyssh. Uchebn. Zaved. Prikl., Biokhim. Biotekhnol. 11, 358 (2021).

    Article  Google Scholar 

  23. Y. S. Oon, S. A. Ong, L. N. Ho, et al., Chem. Eng. J. 344, 236 (2018).

    Article  CAS  Google Scholar 

  24. A. Nawaz, I. Haq, K. Qaisar, et al., Process Saf. Environ. Prot. 161, 357 (2022).

    Article  CAS  Google Scholar 

  25. S. E. Tarasov, Yu. V. Plekhanova, V. V. Kashin, et al., Biosensors 12, 699 (2022).

    Article  CAS  Google Scholar 

  26. GOST R 53359-2009. Milk and Milk Processing Products. Method for Determining pH (Standartinform, Moscow, 2009) [in Russian].

  27. C. W. Davies and A.M. James, A Dictionary of Electrochemistry (Macmillan Press, 1976; Mir, Moscow, 1979), p. 184.

  28. V. F. Passos, S. Aquino Neto, A. R. Andrade, and V. Reginatto, Sci. Agric. 73, 424 (2016).

    Article  CAS  Google Scholar 

Download references


We are grateful to the Resource Center for Electron and Probe Microscopy of the National Research Center “Kurchatov Institute.”


This work was carried out within the framework of the thematic plan of the National Research Center “Kurchatov Institute” 1.11. “Development of nature-like bioenergy and hybrid energy sources for various applications.”

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. V. Vishnevskaya.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnevskaya, M.V., Parunova, Y.M., Reshetilov, A.N. et al. On the Stable Operation of a Membraneless Microbial Fuel Cell for More Than One Hundred Days. Nanotechnol Russia 18, 28–32 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: