Abstract
The microalgae Chlorella vulgaris is cultivated in a thin-layer tubular photobioreactor with a unique design illuminated by a side-glow optical fiber. As a result of applying a method of intensive prototyping, the optimal design of the photobioreactor is found, and the maximum growth rate of 32 mg/L/day is achieved (against 8 mg/L/day in the case of control cultivation in a luminostat). The total protein content in the biomass obtained from the unit is 21 ± 6%, which is slightly lower when compared to the control (26 ± 6%); however, the revealed differences are not statistically significant. In addition, the levels of saturated palmitic (C16:0) and unsaturated linoleic (C18:2) and α-linolenic (C18:3α) fatty acids are increased in the biomass samples from the photobioreactor in comparison with the control cultivation. Thus, the potential of using a photobioreactor with the developed design for obtaining a nutrient biomass of the microalgae C. vulgaris for the life-support systems of crewed spacecraft is shown.
REFERENCES
E. D. Revellame, R. Aguda, A. Chistoserdov, et al., Algal Res. 55, 102258 (2021). https://doi.org/10.1016/J.ALGAL.2021.102258
L. J. Mapstone, M. N. Leite, S. Purton, et al., Biotechnol. Adv. 59, 107946 (2022). https://doi.org/10.1016/J.BIOTECHADV.2022.107946
O. R. Brown, Oxygen, The Breath of Life: Boon and Bane in Human Health, Disease, and Therapy (Bentham Science Publishers, Sharjah, UAE, 2017).
G. Ruyters, “Blue Light Effects in Biological Systems,” in Proceedings in Life Sciences (Springer, Berlin, 1984), p. 283. https://doi.org/10.1007/978-3-642-69767-8_32
J. Walker and C. Granjou, Futures 92, 59 (2017). https://doi.org/10.1016/J.FUTURES.2016.12.001
L. Alemany, E. Peiro, C. Arnau, et al., Biochem. Eng. J. 151, 107323 (2019). https://doi.org/10.1016/J.BEJ.2019.107323
N. Sachdeva, L. Poughon, O. Gerbi, et al., Front. Astron. Space Sci. 8, 119 (2021). https://doi.org/10.3389/fspas.2021.700270
P. J. Boston, J. Br. Interplanet. Soc. 34, 189 (1981).
N. Tikhomirova, S. Ushakova, G. Kalacheva, and A. Tikhomirov, Acta Astronaut. 126, 59 (2016). https://doi.org/10.1016/J.ACTAASTRO.2016.04.020
C. Verseux, M. Baqué, K. Lehto, et al., Int. J. Astrobiol. 15, 65 (2016). https://doi.org/10.1017/S147355041500021X
G. Detrell, H. Helisch, J. Keppler, et al., in Proceedings of the 49th Int. Conf. Environ. Syst. (2019).
L. Tong, D. Hu, H. Liu, et al., Ecol. Eng. 37, 2025 (2011). https://doi.org/10.1016/J.ECOLENG.2011.08.013
G. Murukesan, H. Leino, P. Mäenpää, et al., Origins Life Evol. Biospheres 46, 119. https://doi.org/10.1007/s11084-015-9458-x
L. Poughon, C. Laroche, C. Creuly, et al., Life Sci. Space Res. 25, 53 (2020). https://doi.org/10.1016/j.lssr.2020.03.002
G. Detrell, in Proceedings of the 50th Int. Conf. Environ. Syst. (2020), p. 12
M. T. Pickett, L. Roberson, J. Calabria, et al., Life Sci. Space Res. 24, 64 (2019). https://doi.org/10.1016/j.lssr.2019.10.002
D. Chuka-ogwude, J. C. Ogbonna, and N. R. Moheimani, Algal Res. 60, 102509 (2021). https://doi.org/10.1016/J.ALGAL.2021.102509
T. Grivalský, K. Ranglová, J. A. da Câmara Manoel, et al., Folia Microbiol. 64, 603 (2019). https://doi.org/10.1007/S12223-019-00739-7
M. Nelson, N. S. Pechurkin, J. P. Allen, et al., Environ. Biotechnol, 4641, 517 (2010). https://doi.org/10.1007/978-1-60327-140-0_11
V. N. Sychev, M. A. Levinskikh, and Y. Y. Shepelev, Adv. Space Res. 31, 1693 (2003). https://doi.org/10.1016/S0273-1177(03)80016-9
E. E. Matula and J. A. Nabity, Life Sci. Space Res. 20, 35 (2019). https://doi.org/10.1016/J.LSSR.2018.12.001
G. Detrell, Front. Astron. Space Sci. 8, 124 (2021). https://doi.org/10.3389/FSPAS.2021.700579/XML/NLM
S. Belz, M. Buchert, J. Bretschneider, et al., Acta Astronaut. 101, 170 (2014). https://doi.org/10.1016/j.actaastro.2014.04.023
G. Detrell, J. Keppler, H. Helisch, et al., Int. Conf. Environ. Syst. 50, 12 (2020).
N. Pfennig and K. D. Lippert, Arch. Mikrobiol. 55, 245 (1966). https://doi.org/10.1007/BF00410246
K. V. Gorin, Ya. E. Sergeeva, V. M. Pojidaev, et al., Results Eng. 4, 100041 (2019). https://doi.org/10.1016/J.RINENG.2019.100041
A. B. Rubin, Biophysics 2, 275 (2004).
O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randal, J. Biol. Chem. 193, 265 (1951). https://doi.org/10.1016/s0021-9258(19)52451-6
Ya. E. Sergeeva, E. B. Mostova, K. V. Gorin, et al., Appl. Biochem. Microbiol. 53, 807 (2017). https://doi.org/10.1134/S0003683817080063
J. Liu, Y. Liu, H. Wang, and S. Xue, Bioresour. Technol. 176, 284 (2015). https://doi.org/10.1016/j.biortech.2014.10.094
A. A. Denisov and V. Yu. Zhuikov, Dostizheniya Nauki i Tekhniki APK 12, 54 (2007).
Funding
The studies have been performed within the framework of works on thematic plan 1.10. “Development of Scientific and Technical Grounds for the Creation of Autonomous Life-Support Systems for Use under Conditions of the Far North, Arctic, and Space” of the National Research Center “Kurchatov Institute”.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
We declare that we have no conflicts of interest.
Additional information
Translated by E. Boltukhina
Rights and permissions
About this article
Cite this article
Ovchinnikova, A.M., Sukhinov, D.V., Romanov, A.O. et al. A Study of the Processes of the Cultivation and Useful Products Accumulation by the Microalgae Chlorella vulgaris in a Photobioreactor with a Fiber-Optic Lighting System. Nanotechnol Russia 18, 98–104 (2023). https://doi.org/10.1134/S2635167623010081
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2635167623010081