Skip to main content
Log in

A Study of the Processes of the Cultivation and Useful Products Accumulation by the Microalgae Chlorella vulgaris in a Photobioreactor with a Fiber-Optic Lighting System

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The microalgae Chlorella vulgaris is cultivated in a thin-layer tubular photobioreactor with a unique design illuminated by a side-glow optical fiber. As a result of applying a method of intensive prototyping, the optimal design of the photobioreactor is found, and the maximum growth rate of 32 mg/L/day is achieved (against 8 mg/L/day in the case of control cultivation in a luminostat). The total protein content in the biomass obtained from the unit is 21 ± 6%, which is slightly lower when compared to the control (26 ± 6%); however, the revealed differences are not statistically significant. In addition, the levels of saturated palmitic (C16:0) and unsaturated linoleic (C18:2) and α-linolenic (C18:3α) fatty acids are increased in the biomass samples from the photobioreactor in comparison with the control cultivation. Thus, the potential of using a photobioreactor with the developed design for obtaining a nutrient biomass of the microalgae C. vulgaris for the life-support systems of crewed spacecraft is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. E. D. Revellame, R. Aguda, A. Chistoserdov, et al., Algal Res. 55, 102258 (2021). https://doi.org/10.1016/J.ALGAL.2021.102258

    Article  Google Scholar 

  2. L. J. Mapstone, M. N. Leite, S. Purton, et al., Biotechnol. Adv. 59, 107946 (2022). https://doi.org/10.1016/J.BIOTECHADV.2022.107946

    Article  CAS  Google Scholar 

  3. O. R. Brown, Oxygen, The Breath of Life: Boon and Bane in Human Health, Disease, and Therapy (Bentham Science Publishers, Sharjah, UAE, 2017).

  4. G. Ruyters, “Blue Light Effects in Biological Systems,” in Proceedings in Life Sciences (Springer, Berlin, 1984), p. 283. https://doi.org/10.1007/978-3-642-69767-8_32

    Book  Google Scholar 

  5. J. Walker and C. Granjou, Futures 92, 59 (2017). https://doi.org/10.1016/J.FUTURES.2016.12.001

    Article  Google Scholar 

  6. L. Alemany, E. Peiro, C. Arnau, et al., Biochem. Eng. J. 151, 107323 (2019). https://doi.org/10.1016/J.BEJ.2019.107323

    Article  CAS  Google Scholar 

  7. N. Sachdeva, L. Poughon, O. Gerbi, et al., Front. Astron. Space Sci. 8, 119 (2021). https://doi.org/10.3389/fspas.2021.700270

    Article  Google Scholar 

  8. P. J. Boston, J. Br. Interplanet. Soc. 34, 189 (1981).

    Google Scholar 

  9. N. Tikhomirova, S. Ushakova, G. Kalacheva, and A. Tikhomirov, Acta Astronaut. 126, 59 (2016). https://doi.org/10.1016/J.ACTAASTRO.2016.04.020

    Article  CAS  Google Scholar 

  10. C. Verseux, M. Baqué, K. Lehto, et al., Int. J. Astrobiol. 15, 65 (2016). https://doi.org/10.1017/S147355041500021X

    Article  CAS  Google Scholar 

  11. G. Detrell, H. Helisch, J. Keppler, et al., in Proceedings of the 49th Int. Conf. Environ. Syst. (2019).

  12. L. Tong, D. Hu, H. Liu, et al., Ecol. Eng. 37, 2025 (2011). https://doi.org/10.1016/J.ECOLENG.2011.08.013

    Article  Google Scholar 

  13. G. Murukesan, H. Leino, P. Mäenpää, et al., Origins Life Evol. Biospheres 46, 119. https://doi.org/10.1007/s11084-015-9458-x

  14. L. Poughon, C. Laroche, C. Creuly, et al., Life Sci. Space Res. 25, 53 (2020). https://doi.org/10.1016/j.lssr.2020.03.002

    Article  Google Scholar 

  15. G. Detrell, in Proceedings of the 50th Int. Conf. Environ. Syst. (2020), p. 12

  16. M. T. Pickett, L. Roberson, J. Calabria, et al., Life Sci. Space Res. 24, 64 (2019). https://doi.org/10.1016/j.lssr.2019.10.002

    Article  Google Scholar 

  17. D. Chuka-ogwude, J. C. Ogbonna, and N. R. Moheimani, Algal Res. 60, 102509 (2021). https://doi.org/10.1016/J.ALGAL.2021.102509

    Article  Google Scholar 

  18. T. Grivalský, K. Ranglová, J. A. da Câmara Manoel, et al., Folia Microbiol. 64, 603 (2019). https://doi.org/10.1007/S12223-019-00739-7

    Article  Google Scholar 

  19. M. Nelson, N. S. Pechurkin, J. P. Allen, et al., Environ. Biotechnol, 4641, 517 (2010). https://doi.org/10.1007/978-1-60327-140-0_11

    Article  Google Scholar 

  20. V. N. Sychev, M. A. Levinskikh, and Y. Y. Shepelev, Adv. Space Res. 31, 1693 (2003). https://doi.org/10.1016/S0273-1177(03)80016-9

    Article  CAS  Google Scholar 

  21. E. E. Matula and J. A. Nabity, Life Sci. Space Res. 20, 35 (2019). https://doi.org/10.1016/J.LSSR.2018.12.001

    Article  Google Scholar 

  22. G. Detrell, Front. Astron. Space Sci. 8, 124 (2021). https://doi.org/10.3389/FSPAS.2021.700579/XML/NLM

    Article  Google Scholar 

  23. S. Belz, M. Buchert, J. Bretschneider, et al., Acta Astronaut. 101, 170 (2014). https://doi.org/10.1016/j.actaastro.2014.04.023

    Article  CAS  Google Scholar 

  24. G. Detrell, J. Keppler, H. Helisch, et al., Int. Conf. Environ. Syst. 50, 12 (2020).

  25. N. Pfennig and K. D. Lippert, Arch. Mikrobiol. 55, 245 (1966). https://doi.org/10.1007/BF00410246

    Article  CAS  Google Scholar 

  26. K. V. Gorin, Ya. E. Sergeeva, V. M. Pojidaev, et al., Results Eng. 4, 100041 (2019). https://doi.org/10.1016/J.RINENG.2019.100041

    Article  Google Scholar 

  27. A. B. Rubin, Biophysics 2, 275 (2004).

    Google Scholar 

  28. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randal, J. Biol. Chem. 193, 265 (1951). https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  Google Scholar 

  29. Ya. E. Sergeeva, E. B. Mostova, K. V. Gorin, et al., Appl. Biochem. Microbiol. 53, 807 (2017). https://doi.org/10.1134/S0003683817080063

    Article  CAS  Google Scholar 

  30. J. Liu, Y. Liu, H. Wang, and S. Xue, Bioresour. Technol. 176, 284 (2015). https://doi.org/10.1016/j.biortech.2014.10.094

    Article  CAS  Google Scholar 

  31. A. A. Denisov and V. Yu. Zhuikov, Dostizheniya Nauki i Tekhniki APK 12, 54 (2007).

    Google Scholar 

Download references

Funding

The studies have been performed within the framework of works on thematic plan 1.10. “Development of Scientific and Technical Grounds for the Creation of Autonomous Life-Support Systems for Use under Conditions of the Far North, Arctic, and Space” of the National Research Center “Kurchatov Institute”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Ovchinnikova, D. V. Sukhinov, A. O. Romanov, V. M. Pozhidaev or P. M. Gotovtsev.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikova, A.M., Sukhinov, D.V., Romanov, A.O. et al. A Study of the Processes of the Cultivation and Useful Products Accumulation by the Microalgae Chlorella vulgaris in a Photobioreactor with a Fiber-Optic Lighting System. Nanotechnol Russia 18, 98–104 (2023). https://doi.org/10.1134/S2635167623010081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623010081

Keywords:

Navigation