Skip to main content
Log in

Field-Effect Transistors with High Electron Mobility on an AlGaN/GaN Heterostructure with Gate Recessing into the Barrier Layer

  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The influence of the thickness of the barrier layer of a nitride heterostructure on the characteristics of field-effect transistors with high electron mobility (high electron mobility transistors, HEMTs) is considered. Reducing the thickness of the barrier layer will increase the transconductance of the transistor, its operating frequencies, gain, and specific output power. This paper considers the change in the thickness of the barrier layer of the heterostructure due to gate recession. The developed and implemented method of low-energy defect-free dry etching of the AlGaN barrier layer is used, which consists in the cyclic repetition of operations of the plasma-chemical oxidation of AlGaN and removal of the formed oxide layer by reactive-ion etching in inductively coupled plasma in a chlorine-containing medium. For the first time, AlGaN/AlN/GaN HEMTs with a gate recess are fabricated using the proposed etching method. In this case, the current values of the obtained transistors do not depend on the number of etching cycles, the position of the operating point along the gate is shifted towards positive voltages (up to transistors operating in the enrichment mode).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. V. G. Mokerov, A. L. Kuznetsov, Yu. V. Fedorov, A. S. Bugaev, A. Yu. Pavlov, E. N. Enyushkina, D. L. Gnatyuk, A. V. Zuev, R. R. Galiev, E. N. Ovcharenko, Yu. N. Sveshnikov, A. F. Tsatsulnikov, and V. M. Ustinov, “AlGaN/GaN-HEMTs with a breakdown voltage higher than 100 V and maximum oscillation frequency fmax as high as 100 GHz,” Semicond. 43, 537–543 (2009).

    Article  CAS  Google Scholar 

  2. Yu. V. Fedorov, D. L. Gnatyuk, A. S. Bugaev, O. S. Matveenko, R. R. Galiev, A. V. Zuev, and S. V. Mikhailovich, “Designing gallium nitride-based monolithic microwave integrated circuits for the Ka, V, and W bands,” Russ. Microelectron. 45, 128–136 (2016).

    Article  CAS  Google Scholar 

  3. S. V. Mikhajlovich and Yu. V. Fedorov, “Effect of the thickness of barrier layer of nanoheterostructures and the gate-drain capacity on the UHF and noise characteristics of field transistors with high mobility of electrons on the basis of AlGaN/GaN,” Izv. VUZov Radiofiz. 59, 171 (2016).

    Google Scholar 

  4. Yu. V. Fedorov and S. V. Mikhaylovich, “Prospects for substitution of arsenide MIS with nitride elements,” Nano- i Mikrosistemnaya Tekh. 18, 217–226 (2016).

  5. R. R. Galiev, D. L. Gnatyuk, A. V. Zuev, D. V. Krapuhin, M. V. Majtama, O. S. Matveenko, S. V. Mikhajlovich, Yu. V. Fedorov, and M. Yu. Shcherbakova, “Nitride technologies for use in the millimeter wavelength range,” Nano- i Mikrosistemnaya Tekh., No. 2, 21–32 (2015).

  6. A. Yu. Pavlov, V. Yu. Pavlov, D. N. Slapovskiy, S. S. Arutyunyan, Yu. V. Fedorov, and P. P. Mal’tsev, “Nonalloyed ohmic contacts for high-electron-mobility transistors based on AlGaN/GaN heterostructures,” Russ. Microelectron. 46, 340–347 (2017).

    Article  Google Scholar 

  7. G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo, D. Langley, D. J. Denninghoff, M. Trejo, and E. R. Heller, “Short channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices,” IEEE Trans. Electron Devices 54, 2589–2597 (2007).

    Article  CAS  Google Scholar 

  8. K. Shinohara, D. C. Regan, Y. Tang, A. Corrion, D. F. Brown, J. Wong, J. F. Robinson, H. Fung, A. Schmitz, T. Oh, S. Kim, P. Chen, R. Nagele, A. Margomenos, and M. Micovic, “Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications,” IEEE Trans. Electron Devices 60, 2982–2996 (2013).

    Article  CAS  Google Scholar 

  9. A. Yu. Pavlov, “Technology of manufacturing of transistors with depletion and enrichment of the channel on the basis of gallium nitride,” Elektron. Tekh., Ser. 3: Mikroelektronika, No. 2, 64–71 (2019).

    Google Scholar 

  10. A. Yu. Pavlov, S. A. Gamkrelidze, K. N. Tomosh, Yu. V. Fedorov, V. Yu. Pavlov, R. R. Galiev, and P. P. Mal’tsev, “Technology of manufacturing mutually complementing transistors on the basis of gallium nitride,” Problemy Razrabotki Perspektivnyh Mikro- Nanoelektronnyh Sistem (MES), No. 3, 69–74 (2018).

  11. S. V. Mikhailovich, A. Yu. Pavlov, K. N. Tomosh, and Yu. V. Fedorov, “Low-energy defectless dry etching of the AlGaN/AlN/GaN HEMT barrier layer”, Tech. Phys. Lett. 44, 435–437 (2018).

    Article  CAS  Google Scholar 

  12. A. Chakroun, A. Jaouad, M. Bouchilaoun, O. Arenas, A. Soltani, and H. Maher, “Normally-off AlGaN/GaN MOSHEMT using ultra-thin Al0.45Ga0.55N barrier layer,” Physica Status Solidi A 214, 1600836 (2017).

    Article  Google Scholar 

  13. A. Yu. Pavlov, S. V. Mikhajlovich, K. N. Tomosh, and Yu. V. Fedorov, “Method of dry etching of nitride layers,” RF Patent No. 2694164, Byull. Izobret., No. 19 (2018).

  14. K. N. Tomosh, A. Yu. Pavlov, V. Yu. Pavlov, R. A. Khabibullin, S. S. Arutyunyan, and P. P. Mal-tsev, “Investigation of the fabrication processes of AlGaN/AlN/GaN HEMTs with in situ Si3N4 passivation,” Semicond. 50, 1416–1420 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Pavlov.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, A.Y., Tomosh, K.N., Pavlov, V.Y. et al. Field-Effect Transistors with High Electron Mobility on an AlGaN/GaN Heterostructure with Gate Recessing into the Barrier Layer. Nanotechnol Russia 17 (Suppl 1), S45–S49 (2022). https://doi.org/10.1134/S2635167622070151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622070151

Keywords:

Navigation