Skip to main content
Log in

Features of the Formation of Conductive Channels in Memristors Based on Solid Electrolytes

  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Experimental data on measurement of the resistance and electrical conductivity in the low-resistance mode of operation of a germanium-selenide-based memristor with a self-forming conductive channel in the form of a silver filament are obtained in the range of operating frequencies and temperatures. In the frequency experiment, the influence of the switching frequency is tested at room temperature in the range of 1–10 000 Hz. The main result of the experiment is the identification of a linear relationship between the electrical conductivity and the memristor operating cycle time in semilogarithmic coordinates, which made it possible to introduce a temperature-dependent kinetic constant. This experimental fact made it possible to establish the main parameter affecting the shape of the current–voltage characteristics, namely the thickness of the conductive channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. L. O. Chua, “Memristor–missing circuit element,” IEEE Trans. Circuit Theory CT-18, 507–519 (1971).

    Article  Google Scholar 

  2. L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proc. IEEE 64, 209–223 (1976).

    Article  Google Scholar 

  3. J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nat. Nanotechnol. 8, 13–24 (2013).

    Article  CAS  Google Scholar 

  4. G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, and M. Nafrıa, “Metal oxide resistive memory switching mechanism based on conductive filament properties”, J. Appl. Phys. 110, 124518 (2011).

    Article  Google Scholar 

  5. K. M. Kim, D. S. Jeong, and C. S. Hwang, “Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook,” Nanotechnol. 22, 254002 (2011).

    Article  Google Scholar 

  6. R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  7. K. A. Campbell, “Self-directed channel memristor for high temperature operation,” Microelectron. J. 59, 10–14 (2017).

    Article  CAS  Google Scholar 

  8. K. A. Campbell and C. M. Anderson, “Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers,” Microelectron. J. 38, 52–59 (2007).

    Article  CAS  Google Scholar 

  9. A. H. Edwards, K. A. Campbell, and A. C. Pineda, “Self-trapping of single and paired electrons in Ge2Se3,” J. Phys.: Condens. Matter 24, 195801 (2012).

    CAS  Google Scholar 

  10. A. Devasia, S. Kurinec, K. A. Campbell, and S. Raoux, “Influence of Sn migration on phase transition in GeTe and Ge2Se3 thin films,” Appl. Phys. Lett. 96, 141908 (2010).

    Article  Google Scholar 

  11. A. N. Aleshin, N. V. Zenchenko, and O. A. Ruban, “Numerical simulation of the current–voltage characteristic of a bipolar hafnium-oxide memristor,” Tech. Phys. Lett. 47, 636–640 (2021).

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Foundation for Basic Research, project no. 19-29-03003 MK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ruban.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A.N., Zenchenko, N.V. & Ruban, O.A. Features of the Formation of Conductive Channels in Memristors Based on Solid Electrolytes. Nanotechnol Russia 17 (Suppl 1), S68–S71 (2022). https://doi.org/10.1134/S2635167622070023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622070023

Keywords:

Navigation