Skip to main content
Log in

Carbon Fibers from Cellulosic Precursor for Thermal Insulation: An Insight Into the Effect of Stabilization and Carbonization Conditions on the Synthesis

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

There is an increasing demand for lightweight composites reinforced with carbon fibers (CFs) that possess exceptional thermal characteristics, especially at high-temperature conditions. The focus of this study is primarily on the sequence of structural changes at the micro-nano level during the carbonization of cellulosic fibers collected from Northern Vietnam. The impact of various operational parameters in the carbonization process such as the heating temperature and the stabilization process also discussed. The chemical structure, morphology, and thermal conductivity of cellulose-based fiber were investigated. This investigation revealed that prepared CF-3 using cellulosic fibers collected from Northern Vietnam through the optimized parameters can be a potentials material for making outer ring insulation in high-temperature furnace environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Luning Chai, Bin Lou, Ran Yu, et al., J. Anal. Appl. Pyrol. 158, 105260 (2021).

    Article  CAS  Google Scholar 

  2. P. Morgan, Carbon Fibers and Their Composites (CRC, Boca Raton, FL, 2005).

    Book  Google Scholar 

  3. G. Dumanlı and A. H. Windle, Mater. Sci. 47, 4236–4250 (2012).

    Article  Google Scholar 

  4. J. B. Donnet and R. C. Bansal, Carbon Fibers (Marcel Dekker, New York, 1990).

    Google Scholar 

  5. X. Huang, Materials 2, 2369–2403 (2009).

    Article  CAS  Google Scholar 

  6. B. Tang, Y. Wang, L. Hu, et al., J. Eng. Fibers Fabrics 14, 1–9 (2019).

    Google Scholar 

  7. Bo Tang, Ying Wang, Jinhong Yu, et al., J. Chem. 2020, 1–15 (2020).

    Google Scholar 

  8. Ch. Wang, X. Jin, H. Cheng, et al., Mater. Des. 131, 177–185 (2017).

    Article  CAS  Google Scholar 

  9. N. M. Puri, I. Kenny, et al., Polym. Degrad. Stab. 141, 84–96 (2017).

    Article  Google Scholar 

  10. H. W. Wong, J. Peck, J. Assif, et al., J. Anal. Appl. Pyrol. 122, 258–267 (2016).

    Article  CAS  Google Scholar 

  11. P. W. Gibson, C. Lee, and F. Ko, J. Eng. Fiber Fab. 2, 32–40 (2007).

    Google Scholar 

  12. E. Frank, F. Hermanutz, and M. R. Buchmeiser, Macromol. Mater. Eng. 297, 493–501 (2012).

    Article  CAS  Google Scholar 

  13. W. Dang, J. Liu, X. Wang, et al., Polymers 12, 63 (2020).

    Article  CAS  Google Scholar 

  14. A. Galiguzov, A. Malakho, V. Kulakov, et al., Carbon Lett. 14, 22–26 (2013).

    Article  Google Scholar 

  15. J. M. Spörl, R. Beyer, F. Abels, et al., Macromol. Mater. Eng. 302, 1700195 (2017).

    Article  Google Scholar 

  16. H. Kleinhans and L. Salmen, J. Appl. Polym. Sci. 133, 43965 (2016).

    Article  Google Scholar 

  17. E. Frank, L. M. Steudle, D. Ingildeev, et al., Angew. Chem. Int. Ed. 53, 5262–5298 (2014).

    Article  CAS  Google Scholar 

  18. D. S. Karousos, L. Lei, and A. Lindbrathen, Sep. Purif. Technol. 253, 117473 (2020).

    Article  CAS  Google Scholar 

  19. Mitsui and Co., Monthly Report (Mitsui & Co. Global Strategic Studies Inst., 2021).

    Google Scholar 

  20. K. George, B. P. Panda, S. Mohanty, and S. K. Nayak, Polym. Adv. Technol. 29, 8–21 (2017).

    Article  Google Scholar 

  21. J. Y. Zhu, U. P. Agarwal, P. N. Ciesielski, et al., Biotechnol. Biofuels 14, 114 (2021).

    Article  CAS  Google Scholar 

  22. A. A. Ogale, M. Zhang, and J. Jin, J. Appl. Polym. Sci. 133, 43794 (2016).

    Article  Google Scholar 

  23. S.-J. Park, Carbon Fibers (Springer, New York, 2015).

    Google Scholar 

  24. N.-D. Le, M. Trogen, Y. Ma, et al., Carbohydr. Polym. 250, 116918 (2020).

    Article  CAS  Google Scholar 

  25. A. E. Lewandowska, C. Soutis, L. Savage, and S. J. Eichhorn, Compos. Sci. Technol. 116, 50–57 (2015).

    Article  CAS  Google Scholar 

  26. Y.-H. Wang, S. Bayatpour, X. Qian, et al., Colloids Surf., A 612, 125908 (2021).

    Article  CAS  Google Scholar 

  27. P. Guo, J. Li, S. Pang, et al., Carbon 183, 525–529 (2021).

    Article  CAS  Google Scholar 

  28. Shigetaka Wada, Bongkoch Piempermpoon, Pao Na Nakorn, et al., J. Sci. Res. Chula. Univ. 30, 109–120 (2005).

    CAS  Google Scholar 

  29. M. A. Kedzierski, R. Brignoli, and K. T. Quine, Int. J. Ref. 74, 1–9 (2017).

    Article  Google Scholar 

  30. L. Huang and M. Sel-Genk, Energy Convers. Manage. 42, 599–612 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khanh S.T. Tran, Nguyen Van Minh or Govindan Suresh Kumar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, K.S., Dinh, N.N., Nam, N.P. et al. Carbon Fibers from Cellulosic Precursor for Thermal Insulation: An Insight Into the Effect of Stabilization and Carbonization Conditions on the Synthesis. Nanotechnol Russia 17, 372–379 (2022). https://doi.org/10.1134/S2635167622030090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622030090

Navigation