Skip to main content

Polymer and Perovskite Composite Memristor Materials and Devices for Neuromorphic Applications

Abstract

Synaptic materials and devices that mimic biological synapses are essential components for neuromorphic computational operations. Polymer, perovskite, and composite (organic–inorganic) optoelectronic synaptic devices for neuromorphic operations based on memristor structures are considered as electronic analogues of synapses in electronic networks. Advances in optoelectronics have shown that electrical voltage and light can be components of synaptic devices. Such optoelectronic synaptic devices can simulate several key biological synaptic functions such as short-term plasticity, long-term plasticity, time-dependent spike plasticity, and spike rating. Synapses can be simulated using memristor devices and materials with resistive switching of the resistance under the action of an electric field and light. The results of studies of the effect of resistive switching in polymer and organometallic perovskite composite (organic-inorganic) memristor materials and devices based on them are described. The inclusion of graphene and graphene-oxide particles into the matrices of polymers and organometallic perovskites leads to switching and memory effects in such memristor materials and devices, which opens up the possibility of their use as optoelectronic synaptic devices in neuromorphic operations.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. J. D. Kendall and S. Kumar, Appl. Phys. Rev. 7, 011305 (2020). https://doi.org/10.1063/1.5129306

    Article  CAS  Google Scholar 

  2. J. Park, Electronics 9, 1414 (2020). https://doi.org/10.3390/electronics9091414

    Article  Google Scholar 

  3. Y. Zhao, S. Dai, D. Liu, et al., Org. Electron. 83, 105749 (2020). https://doi.org/10.1016/j.orgel.2020.105749

    Article  CAS  Google Scholar 

  4. H.-T. Zhang, P. Pa, J. Lin, et al., Appl. Phys. Rev. 7, 011309 (2020). https://doi.org/10.1063/1.5113574

    Article  CAS  Google Scholar 

  5. I. Chakraborty, A. Jaiswal, A. K. Saha, et al., Appl. Phys. Rev. 7, 021308 (2020). https://doi.org/10.1063/1.5113536

    Article  CAS  Google Scholar 

  6. X. Xing, M. Chen, Y. Gong, et al., Sci. Technol. Adv. Mater. 21, 101 (2020). https://doi.org/10.1080/14686996.2020.1725395

    Article  CAS  Google Scholar 

  7. D. A. Lapkin, A. V. Emelyanov, V. A. Demin, et al., Microelectron. Eng. 185–186, 43 (2018). https://doi.org/10.1016/j.mee.2017.10.017

    Article  CAS  Google Scholar 

  8. V. Erokhin, Encyclopedia of Complexity and Systems Science, Ed. by R. A. Meyers (Springer, 2017). https://doi.org/10.1007/978-3-642-27737-5_703-1

  9. X.-X. Xu, Q. Luo, T. C. Gong, et al., Chin. Phys. B 30, 058702 (2021). https://doi.org/10.1088/1674-1056/abe0c4

    Article  CAS  Google Scholar 

  10. R. Yang, Chin. Phys. B 29, 097305 (2020). https://doi.org/10.1088/1674-1056/aba9c7

    Article  CAS  Google Scholar 

  11. C. Eames, J. M. Frost, P. R. F. Barnes, et al., Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497

    Article  CAS  Google Scholar 

  12. B. Hwang and J.-S. Lee, Sci. Rep. 7, 673 (2017). https://doi.org/10.1038/s41598-017-00778-5

    Article  CAS  Google Scholar 

  13. X. Wu, H. Yu, and J. Cao, AIP Adv. 10, 085202 (2020). https://doi.org/10.1063/1.5130914

    Article  CAS  Google Scholar 

  14. U. Das, P. Sarkar, B. Paul, et al., Appl. Phys. Lett. 118, 182103 (2021). https://doi.org/10.1063/5.0049161

    Article  CAS  Google Scholar 

  15. P. S. Krylov, A. S. Berestennikov, A. N. Aleshin, A. S. Komolov, I. P. Shcherbakov, V. N. Petrov, and I. N. Trapeznikova, Phys. Solid State 57, 1678 (2015). https://doi.org/10.1134/S1063783415080168

    Article  CAS  Google Scholar 

  16. P. S. Krylov, A. S. Berestennikov, S. A. Fefelov, A. S. Komolov, and A. N. Aleshin, Phys. Solid State 58, 2567 (2016). https://doi.org/10.1134/S1063783416120155

    Article  CAS  Google Scholar 

  17. S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Article  Google Scholar 

  18. K. D. Tsendin, E. A. Lebedev, and A. B. Shmel’kin, Phys. Solid State 47, 439 (2005).

    Article  CAS  Google Scholar 

  19. A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, et al., Org. Electron. 16, 186 (2015). https://doi.org/10.1016/j.orgel.2014.11.006

    Article  CAS  Google Scholar 

  20. A. N. Aleshin, P. S. Krylov, A. S. Berestennikov, et al., Synth. Met. 217, 7 (2016). https://doi.org/10.1016/j.synthmet.2016.03.011

    Article  CAS  Google Scholar 

  21. A. N. Aleshin, I. P. Shcherbakov, E. V. Gushchina, et al., Org. Electron. 50, 213 (2017). https://doi.org/10.1016/j.orgel.2017.08.004

    Article  CAS  Google Scholar 

  22. A. N. Aleshin, I. P. Shcherbakov, O. P. Chikalova-Luzina, et al., Synth. Met. 260, 116291 (2020). https://doi.org/10.1016/j.synthmet.2020.116291

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aleshin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A.N. Polymer and Perovskite Composite Memristor Materials and Devices for Neuromorphic Applications. Nanotechnol Russia 17, 873–882 (2022). https://doi.org/10.1134/S2635167621060021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621060021