Abstract
Synaptic materials and devices that mimic biological synapses are essential components for neuromorphic computational operations. Polymer, perovskite, and composite (organic–inorganic) optoelectronic synaptic devices for neuromorphic operations based on memristor structures are considered as electronic analogues of synapses in electronic networks. Advances in optoelectronics have shown that electrical voltage and light can be components of synaptic devices. Such optoelectronic synaptic devices can simulate several key biological synaptic functions such as short-term plasticity, long-term plasticity, time-dependent spike plasticity, and spike rating. Synapses can be simulated using memristor devices and materials with resistive switching of the resistance under the action of an electric field and light. The results of studies of the effect of resistive switching in polymer and organometallic perovskite composite (organic-inorganic) memristor materials and devices based on them are described. The inclusion of graphene and graphene-oxide particles into the matrices of polymers and organometallic perovskites leads to switching and memory effects in such memristor materials and devices, which opens up the possibility of their use as optoelectronic synaptic devices in neuromorphic operations.
This is a preview of subscription content, access via your institution.











REFERENCES
J. D. Kendall and S. Kumar, Appl. Phys. Rev. 7, 011305 (2020). https://doi.org/10.1063/1.5129306
J. Park, Electronics 9, 1414 (2020). https://doi.org/10.3390/electronics9091414
Y. Zhao, S. Dai, D. Liu, et al., Org. Electron. 83, 105749 (2020). https://doi.org/10.1016/j.orgel.2020.105749
H.-T. Zhang, P. Pa, J. Lin, et al., Appl. Phys. Rev. 7, 011309 (2020). https://doi.org/10.1063/1.5113574
I. Chakraborty, A. Jaiswal, A. K. Saha, et al., Appl. Phys. Rev. 7, 021308 (2020). https://doi.org/10.1063/1.5113536
X. Xing, M. Chen, Y. Gong, et al., Sci. Technol. Adv. Mater. 21, 101 (2020). https://doi.org/10.1080/14686996.2020.1725395
D. A. Lapkin, A. V. Emelyanov, V. A. Demin, et al., Microelectron. Eng. 185–186, 43 (2018). https://doi.org/10.1016/j.mee.2017.10.017
V. Erokhin, Encyclopedia of Complexity and Systems Science, Ed. by R. A. Meyers (Springer, 2017). https://doi.org/10.1007/978-3-642-27737-5_703-1
X.-X. Xu, Q. Luo, T. C. Gong, et al., Chin. Phys. B 30, 058702 (2021). https://doi.org/10.1088/1674-1056/abe0c4
R. Yang, Chin. Phys. B 29, 097305 (2020). https://doi.org/10.1088/1674-1056/aba9c7
C. Eames, J. M. Frost, P. R. F. Barnes, et al., Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497
B. Hwang and J.-S. Lee, Sci. Rep. 7, 673 (2017). https://doi.org/10.1038/s41598-017-00778-5
X. Wu, H. Yu, and J. Cao, AIP Adv. 10, 085202 (2020). https://doi.org/10.1063/1.5130914
U. Das, P. Sarkar, B. Paul, et al., Appl. Phys. Lett. 118, 182103 (2021). https://doi.org/10.1063/5.0049161
P. S. Krylov, A. S. Berestennikov, A. N. Aleshin, A. S. Komolov, I. P. Shcherbakov, V. N. Petrov, and I. N. Trapeznikova, Phys. Solid State 57, 1678 (2015). https://doi.org/10.1134/S1063783415080168
P. S. Krylov, A. S. Berestennikov, S. A. Fefelov, A. S. Komolov, and A. N. Aleshin, Phys. Solid State 58, 2567 (2016). https://doi.org/10.1134/S1063783416120155
S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).
K. D. Tsendin, E. A. Lebedev, and A. B. Shmel’kin, Phys. Solid State 47, 439 (2005).
A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, et al., Org. Electron. 16, 186 (2015). https://doi.org/10.1016/j.orgel.2014.11.006
A. N. Aleshin, P. S. Krylov, A. S. Berestennikov, et al., Synth. Met. 217, 7 (2016). https://doi.org/10.1016/j.synthmet.2016.03.011
A. N. Aleshin, I. P. Shcherbakov, E. V. Gushchina, et al., Org. Electron. 50, 213 (2017). https://doi.org/10.1016/j.orgel.2017.08.004
A. N. Aleshin, I. P. Shcherbakov, O. P. Chikalova-Luzina, et al., Synth. Met. 260, 116291 (2020). https://doi.org/10.1016/j.synthmet.2020.116291
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The author declares that he has no conflicts of interest.
Additional information
Translated by O. Zhukova
Rights and permissions
About this article
Cite this article
Aleshin, A.N. Polymer and Perovskite Composite Memristor Materials and Devices for Neuromorphic Applications. Nanotechnol Russia 17, 873–882 (2022). https://doi.org/10.1134/S2635167621060021
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2635167621060021