Skip to main content
Log in

Production of Nanofiber Materials Based on Macromolecular Hyaluronic Acid by Electrospinning

  • POLYMER, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Hyaluronic acid-based nanofiber scaffolds imitating the natural extracellular matrix, which is promising for use in tissue engineering, have been prepared by electrospinning. Hyaluronic acid is part of many organs and tissues; it is a biologically active component capable of being involved in cell proliferation and migration. The high viscosity of solutions of the macromolecular biopolymer significantly complicates the preparation of nanofiber scaffolds based on it. Rheological studies have made it possible to determine the solvent composition that contributes to a decrease in the viscosity of the spinning solution. The highest Newtonian viscosity of a 1% hyaluronic acid solution in water is 25 Pa s; in the case of using a mixture of ammonia hydrate (10%) and dimethylformamide at a ratio of 2 : 1, this parameter decreases to 1.147 Pa s. The use of a special spinning cell with a small-diameter nozzle and a high pressure (up to 10 atm) has provided the formation of hyaluronic acid-based nanofibers with a diameter of 100–300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Y. Li, Y. Xiao, and C. Liu, Biomaterials 31, 4639 (2010). https://doi.org/10.1021/acs.chemrev.6b00654

    Article  CAS  Google Scholar 

  2. M. J. Fullana and G. E. Wnek, Drug Deliv. Transl. Res. 2, 313 (2012). https://doi.org/10.1007/s13346-012-0087-x

    Article  CAS  Google Scholar 

  3. T. Wu, H. Zheng, J. Chen, et al., J. Mater. Chem. B 5, 139 (2017). https://doi.org/10.1039/C6TB02484J

    Article  CAS  Google Scholar 

  4. V. Llopis-Hernandez, M. Cantini, C. Gonzalez-Garcia, and M. Salmeron-Sanchez, Int. Mater. Rev. 60, 245 (2014). https://doi.org/10.1179/1743280414Y.0000000049

    Article  CAS  Google Scholar 

  5. M. Arnal-Pastor, C. Martínez Ramos, M. Pérez Garnés, et al., Mater. Sci. Eng. C 33, 4086 (2013). https://doi.org/10.1016/j.msec.2013.05.058

    Article  CAS  Google Scholar 

  6. J. M. Cyphert, C. S. Trempus, and S. Garantziotis, Int. J. Cell Biol. 7, 563818 (2015). https://doi.org/10.1155/2015/563818

    Article  CAS  Google Scholar 

  7. A. Maleki, A.-L. Kjøniksen, and B. Nyström, Polym. Bull. 59, 217 (2007). https://doi.org/10.1007/s00289-007-0760-2

    Article  CAS  Google Scholar 

  8. A. Fallacara, E. Baldini, S. Manfredini, and S. Vertuani, Polymers (Basel) 10, 701 (2018). https://doi.org/10.3390/polym10070701

    Article  CAS  Google Scholar 

  9. M. F. P. Gracaa, S. P. Miguela, C. S. D. Cabral, and I. J. Correia, Carbohyd. Polym. 241, 116364 (2020). https://doi.org/10.1016/j.carbpol.2020.116364

    Article  CAS  Google Scholar 

  10. A. de Pieri, A. M. Byerley, C. R. Musumeci, et al., Spine 3, e1117 (2020). https://doi.org/10.1002/jsp2.1117

    Article  Google Scholar 

  11. M. Abrigo, S. L. McArthur, and P. Kingshott, Macromol. Biosci. 14, 772 (2014). https://doi.org/10.1002/mabi.201300561

    Article  CAS  Google Scholar 

  12. Y. Liaoa, Ch.-H. Loha, M. Tiana, et al., Prog. Polym. Sci. 77, 69 (2018). https://doi.org/10.1016/j.progpolymsci.2017.10.003

    Article  CAS  Google Scholar 

  13. E. K. Brenner, J. D. Schiffman, E. A. Thompson, et al., Carbohyd. Polym. 87, 926 (2012). https://doi.org/10.1016/j.carbpol.2011.07.033

    Article  CAS  Google Scholar 

  14. E. Pabjańczyk-Wlazło, P. Król, I. Krucińska, et al., Adv. Polym. Technol. 37, 1929 (2018). https://doi.org/10.1002/adv.21851

  15. E. Pabjańczyk-Wlazło, I. Krucińska, M. Chrzanowski, et al., Fibres Text. East. Eur. 25, 45 (2017). https://doi.org/10.5604/12303666.1237225

    Article  CAS  Google Scholar 

  16. M. Cowman, T. A. Schmidt, P. Raghavan, and A. Stecco, F1000 Res. 4, 622 (2015). https://doi.org/10.12688/f1000research.6885.1

    Article  Google Scholar 

  17. I. Gatej, M. Popa, and M. Rinaudo, Biomacromolecules 6, 61 (2005). https://doi.org/10.1021/bm040050m

    Article  CAS  Google Scholar 

  18. M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Polymer 43, 3303 (2002). https://doi.org/10.1016/S0032-3861(02)00136-2

    Article  CAS  Google Scholar 

  19. C. Mituppatham, M. Nithitanakul, and P. Supaphol, Macromol. Chem. Phys. 205, 2327 (2004). https://doi.org/10.1002/macp.200400225

    Article  CAS  Google Scholar 

  20. P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, Polymer 46, 4799 (2005). https://doi.org/10.1016/j.polymer.2005.04.021

    Article  CAS  Google Scholar 

  21. J. Li, A. He, Ch. C. Han, et al., Macromol. Rapid Commun. 27, 114 (2006). https://doi.org/10.1002/marc.200500726

    Article  CAS  Google Scholar 

  22. Ah. Esmaeilirad, J. Ko, M. Vrukosuyev, et al., Mater. Res. Express 4, 015302 (2017). https://doi.org/10.1088/2053-1591/4/1/015302

    Article  CAS  Google Scholar 

  23. Ch. S. Kong, S. G. Lee, S. H. Lee, et al., J. Macromol. Sci. B 50, 528 (2011). https://doi.org/10.1080/00222341003784386

    Article  CAS  Google Scholar 

  24. R. Stern, G. Kogan, M. J. Jedrzejas, and L. Šoltés, Biotechnol. Adv. 25, 537 (2007). https://doi.org/10.1016/j.biotechadv.2007.07.001

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and the Government of Moscow (project no. 19-33-70071 mol_a_mos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kh. Tenchurin.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenchurin, T.K., Shepelev, A.D., Belousov, S.I. et al. Production of Nanofiber Materials Based on Macromolecular Hyaluronic Acid by Electrospinning. Nanotechnol Russia 16, 89–95 (2021). https://doi.org/10.1134/S2635167621010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621010092

Navigation