Skip to main content
Log in

Application of Polymer Microspheres for Assessing the Role of Mechanical Factors in the Formation of Neutrophilic Extracellular Traps

  • POLYMER, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract—At present, quite a large number of inducers forming neutrophilic extracellular traps (NET) have been described. Mechanical factors (MF) are of particular importance, since they are constantly acting as neutrophils pass through the microcirculatory system. An adequate choice of therapy for various diseases accompanied by excessive NET formation requires assessment of the ability of a patient’s neutrophils to form NET in response to various inducers. Studying the role of MF in neutrophil activation in patients presents certain difficulties associated with introducing expensive and complex recording systems into laboratory practice. A possible alternative to the existing approaches can be joint incubation of whole blood with hemocompatible polymer microspheres (PMS). To develop this approach, polystyrene microspheres containing quaternary ammonium groups were obtained, on the surface of which hemocompatible aggregates consisting of thiooctadecyl poly-N-vinyl-2-pyrrolidone (PMSnano) were attached. The data obtained indicate that with incubation of blood samples with PMSnano under gentle stirring, the amount of formed NET is statistically significantly higher than in a stationary incubation mode. This confirms the idea that MF are capable of activating neutrophils and triggering the NET formation process. The proposed approach to assessing the effect of MF on neutrophil activation processes owing to its ease of implementation may find wide application both in biomedical research and clinical laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. Brinkmann, U. Reichard, C. Goosmann, et al., Science (Washington, DC, U. S.) 303, 1532 (2004). https://doi.org/10.1126/science.1092385

    Article  CAS  Google Scholar 

  2. K. W. Chen, M. Monteleone, D. Boucher, et al., Sci. Immunol. 3, 11 (2018). https://doi.org/10.1126/sciimmunol.aar6676

    Article  Google Scholar 

  3. M. J. Kaplan and M. Radic, J. Immunol. 189, 2689 (2012). https://doi.org/10.4049/jimmunol.1201719

    Article  CAS  Google Scholar 

  4. V. Papayannopoulos, Nat. Rev. Immunol. 18, 134 (2018). https://doi.org/10.1038/nri.2017.105

    Article  CAS  Google Scholar 

  5. V. Papayannopoulos, K. D. Metzler, A. Hakkim, and A. Zychlinsky, J. Cell. Biol. 191, 677 (2010). https://doi.org/10.1083/jcb.201006052

    Article  CAS  Google Scholar 

  6. A. S. Rohrbach, D. J. Slade, P. R. Thompson, and K. A. Mowen, Front. Immunol. 3, 360 (2012). https://doi.org/10.3389/fimmu.2012.00360

    Article  Google Scholar 

  7. G. Sollberger, A. Choidas, G. L. Burn, et al., Sci. Immunol. 3 (26) (2018). https://doi.org/10.1126/sciimmunol.aar6689

  8. G. Schönrich and M. J. Raftery, Front. Immunol. 7, 366 (2016). https://doi.org/10.3389/fimmu.2016.00366

    Article  Google Scholar 

  9. S. K. Jorch and P. Kubes, Nat. Med. 23, 279 (2017). https://doi.org/10.1038/nm.4294

    Article  CAS  Google Scholar 

  10. K. Kessenbrock, M. Krumbholz, and U. Schönermarck, Nat. Med. 15, 623 (2009). https://doi.org/10.1038/nm.1959

    Article  CAS  Google Scholar 

  11. X. Yu, J. Tan, and S. L. Diamond, J. Thromb. Haemost. 16, 316 (2018). https://doi.org/10.1111/jth.13907

    Article  CAS  Google Scholar 

  12. A. E. Ekpenyong, N. Toepfner, C. Fiddler, et al., Sci. Adv. 3, 11 (2017). https://doi.org/10.1126/sciadv.1602536

    Article  CAS  Google Scholar 

  13. V. V. Kupriyanov, Ya. L. Karaganov, and V. I. Kozlov, Microcirculatory Bed (Meditsina, Moscow, 1975) [in Russian].

    Google Scholar 

  14. A. M. Chernukh, P. N. Aleksandrov, and O. V. Alekseev, Microcirculation (Meditsina, Moscow, 1975) [in Russian].

    Google Scholar 

  15. A. Tsatsakis, A. K. Stratidakis, A. V. Goryachaya, et al., Food. Chem. Toxicol. 127, 42 (2019). https://doi.org/10.1016/j.fct.2019.02.041

    Article  CAS  Google Scholar 

  16. P. P. Kulikov, A. N. Kuskov, A. V. Goryachaya, et al., Polymer Sci., D 10, 264 (2017). https://doi.org/10.1134/S199542121703008X

  17. A. L. Luss, P. P. Kulikov, S. B. Romme, et al., Nanomedicine 13, 703 (2018). https://doi.org/10.2217/nnm-2017-0311

    Article  CAS  Google Scholar 

  18. L. Y. Basyreva, I. B. Brodsky, A. A. Gusev, et al., Hum. Antibodies 24, 39 (2016). https://doi.org/10.3233/HAB-160293

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out under a state task, project FSSM-2020-0004,  with financial support from the Ministry of Education and Science of Russia (grant no. 13.1902.21.0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Basyreva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basyreva, L.Y., Fedorova, E.A., Polonskiy, V.A. et al. Application of Polymer Microspheres for Assessing the Role of Mechanical Factors in the Formation of Neutrophilic Extracellular Traps. Nanotechnol Russia 16, 96–102 (2021). https://doi.org/10.1134/S263516762101002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762101002X

Navigation