Skip to main content
Log in

Synthesis and Investigation of the Properties of Al2O3–Y2O3 Powders Using Nanospray Drying

  • SHORT COMMUNICATION
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

We isolated Al2O3–Y2O3 powders using two different methods: filtration and nanospray drying. The obtained samples were investigated using thermogravimetry, differential scanning calorimetry, X-ray phase analysis, BET, and scanning electron microscopy. We examined the processes of linear shrinkage during thermal and compression consolidation using field-assisted sintering. A comparative analysis of the powders obtained by the two methods was conducted and the results are presented and discussed. A powder containing 96 vol % of the Y3Al5O12 phase can be produced through calcination of the precursor obtained by nanospray drying at 1100°C for 10 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Abell, J.S., Harris, I.R., Cockayne, B., and Lent, B., J. Mater. Sci., 1974, vol. 9, no. 4, p. 527.

    Article  CAS  Google Scholar 

  2. Rahmani, M., Mirzaee, O., Tajally, M., and Loghman-Estarki, M.R., Ceram. Int., 2018, vol. 18, p. 23215.

    Article  Google Scholar 

  3. Yoder, H.S. and Keith, M.L.J., Earth Planet. Mater., 1951, vols. 7–8, p. 519.

    Google Scholar 

  4. Li, X., Li, J.G., Xiu, Z., Huo, D., and Sun, X., J. Am. Ceram. Soc., 2009, vol. 92, no. 1, p. 241.

    Article  CAS  Google Scholar 

  5. Geller, S. and Wood, E.A., Acta Crystallogr., 1956, vol. 9, no. 7, p. 563.

    Article  CAS  Google Scholar 

  6. Kinsman, K.M., Mc Kittrick, J., Sluzky, E., and Hesse, K., J. Am. Ceram. Soc., 1994, vol. 77, no. 11, p. 2866.

    Article  CAS  Google Scholar 

  7. Sim, S.M., Keller, K.A., and Mah, T.I., J. Mater. Sci., 2000, vol. 35, no. 3, p. 713.

    Article  CAS  Google Scholar 

  8. Xiao, Z., Yu, S., Li, Y., Ruan, S., Kong, L.B., Huang, Q., and Tang, D., Mater. Sci. Eng., R, 2020, vol. 139, p. 100518.

  9. Malyavin, F.F., Kravcov, A.A., Tarala, V.A., Nikova, M.S., Tchikolina, I.S., Vakalov, D.S., and Medyanik, E.V., Sci. Tech. J. Inf. Technol. Mech. Opt., 2020, vol. 21, no. 6, p. 872.

    Google Scholar 

  10. Liu, Q., Liu, J., Li, J., Ivanov, M., Medvedev, A., Zeng, Y., and Guo, J., J. Alloys Compd., 2014, vol. 616, p. 81.

    Article  CAS  Google Scholar 

  11. Protasov, A.S., Senina, M.O., and Lemeshev, D.O., Adv. Chem. Chem. Technol., 2020, vol. 34, p. 80.

    Google Scholar 

  12. Yagi, H., Takaichi, K., Ueda, K.I., Yamasaki, Y., Yanagitani, T., and Kaminskii, A.A., Laser Phys., 2005, vol. 15, no. 9, p. 1338.

    CAS  Google Scholar 

  13. Lu, J., Prabhu, M., Song, J., Li, C., Xu, J., Ueda, K., and Yanagitani, T., Appl. Phys. B, 2000, vol. 71, no. 4, p. 469.

    Article  CAS  Google Scholar 

  14. Garanin, S.G., Dmitryuk, A.V., Zhilin, A.A., Mikhailov, M.D., and Rukavishnikov, N.N., J. Opt. Technol., 2010, vol. 77, no. 9, p. 52.

    Google Scholar 

  15. Salikhov, T.P., Kan, V.S., Urazaeva, E.M., Savatyugina, T.S., Arushanov, G.M., and Kan, S.N., Refract. Ind. Ceram., 2017, vol. 3, p. 144.

    Google Scholar 

  16. Neiman, A.Ya., Tkachenko, E.V., Kvichko, L.A., and Kotok, L.A., Russ. J. Inorg. Chem., 1980, vol. 25, no. 9, p. 2340.

    CAS  Google Scholar 

  17. Song, Z., Liao, J., Ding, X., Liu, X., and Liu, Q., J. Crystal Growth, 2013, vol. 365, p. 24.

  18. Valiev, D., Han, T., Vaganov, V., and Stepanov, S., J. Phys. Chem. Solids, 2018, vol. 116, p. 1.

    Article  CAS  Google Scholar 

  19. Fedorov, P.P., Maslov, V.A., Usachev, V.A., and Kononenko, N.E., Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Priborostr., 2012, vol. 8, p. 28.

    Google Scholar 

  20. Katelnikovas, A., Barkauskas, J., Ivanauskas, F., Beganskiene, A., and Kareiva, A., J. Sol-Gel Sci. Technol., 2007, vol. 41, no. 3, p. 193.

    Article  CAS  Google Scholar 

  21. Singlard, M., Remondiere, F., Oriol, S., Fiore, G., Vieille, B., Vardelle, M., and Rossignol, S., J. Sol-Gel Sci. Technol., 2018, vol. 87, no. 2, p. 496.

    Article  CAS  Google Scholar 

  22. Li, X., Liu, H., Wang, J.Y., Cui, H.M., Han, F., Zhang, X.D., and Boughton, R.I., Mater. Lett., 2004, vol. 58, no. 19, p. 2377.

    Article  CAS  Google Scholar 

  23. Sim, S.M., Keller, K.A., and Mah, T.I., J. Mater. Sci., 2000, vol. 35, no. 3, p. 713.

    Article  CAS  Google Scholar 

  24. Rahmani, M., Mirzaee, O., Tajally, M., and Loghman-Estarki, M.R., Ceram. Int., 2018, vol. 44, no. 9, p. 10035.

    Article  CAS  Google Scholar 

  25. Arabgari, S., Malekfar, R., and Motamedi, K., J. Nanopart. Res., 2010, vol. 13, no. 2, p. 597.

    Article  Google Scholar 

  26. Lyamina, G., Ilela, A., Khasanov, O., Petyukevich, M., and Vaitulevich, E., AIP Conf. Proc., 2016, vol. 1772, no. 1, p. 020011.

  27. Ilela, A.E., Cand. Sci. (Eng.) Disseration, Tomsk: Tomsk Polytech. Univ., 2020.

    Google Scholar 

  28. Suárez, M., Fernández, A., Menéndez, J.L., and Torrecillas, R., J. Alloys. Compd., 2010, vol. 493, nos. 1–2, p. 391.

    Article  Google Scholar 

  29. Peng, D.A.I., Cheng, J.I., Liming, S.H., Qi, Q.I., Guobiao, G.U., Zhang, X., and Ningzhong, B., J. Rare Earths, 2017, vol. 35, no. 4, p. 341.

    Article  Google Scholar 

  30. Li, X., Liu, H., Wang, J., Zhang, X., and Cui, H., Opt. Mater., 2004, vol. 25, no. 4, p. 407.

    Article  CAS  Google Scholar 

  31. Liu, W., Zhang, W., Li, J., Kou, H., Shen, Y., Wang, L., and Pan, Y., J. Alloys. Compd., 2010, vol. 503, no. 2, p. 525.

    Article  CAS  Google Scholar 

  32. You, Y., Qi, L., Li, X., and Pan, W., Ceram. Int., 2013, vol. 39, no. 4, p. 3987.

  33. Li, J.G., Ikegami, T., Lee, J.H., and Mori, T., J. Mater. Res., 2000, vol. 15, no. 11, p. 2375.

    Article  CAS  Google Scholar 

  34. Gong, H., Tang, D.Y., Huang, H., and Ma, J., J. Am. Ceram. Soc., 2009, vol. 92, no. 4, p. 812.

    Article  CAS  Google Scholar 

  35. Li, J., Pan, Y., Qiu, F., Wu, Y., Liu, W., and Guo, J., Ceram. Int., 2007, vol. 33, no. 6, p. 1047.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the State tasks Science (BCh) (no. FSWW-2023-0011) using the equipment of the Center for Sharing Use “Nanomaterials and Nanotechnologies” TPU, supported by the RF Ministry of Science and Higher Education (project no. 075-15-2021-710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Khasanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paigin, V.D., Deulina, D.E., Ilela, A.E. et al. Synthesis and Investigation of the Properties of Al2O3–Y2O3 Powders Using Nanospray Drying. rev. and adv. in chem. 12, 270–276 (2022). https://doi.org/10.1134/S2634827623700095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827623700095

Keywords:

Navigation