Skip to main content
Log in

Influence of the Chemical Structure of Terminal Groups on the Properties of Poly(phenylene sulfone) Ultrafiltration Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

For the first time, poly(phenylene sulfones) (PPSFs) with chlorine and hydroxyl terminal groups are synthesized and tested for casting high-performance flat-sheet ultrafiltration membranes. The synthesis of PPSFs is carried out in dimethylacetamide at various ratios of 4,4'-dihydroxydiphenyl and 4,4-dichlorodiphenyl sulfone monomers. Two samples with the predominant content of hydroxyl (PPSF-ОН) and chlorine (PPSF-Cl) terminal groups are studied by NMR spectroscopy, GPC, and DSC methods. The coagulation values of polymer solutions in N-methyl-2-pyrrolidone (NMP) and the mechanical properties and hydrophilicity of polymer materials are determined. Both PPSF samples exhibit high tensile strength values at a level of 16 MPa. Using the method of precipitation of PPSF solutions in NMP with PEG-400 additives into water flat-sheet porous asymmetric membranes with a mesoporous (a pore diameter of about 7 nm) thin outer layer and fingerlike macropores in the substrate layer are obtained. An increase in the proportion of hydroxyl terminal groups enhances the hydrophilicity of the polymer. This, in turn, allows for the preparation of flat-sheet membranes from PPSF-ОН with a water permeability of 66 L/(m2 h bar), which is 1.5 times higher than the water permeability of the PPSF-Cl membrane. Meanwhile, both membranes demonstrate a Blue Dextran (Mw = 70 000 g mol–1) rejection of 99.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. K. Praneet, T. James, and S. Sridha, Chem. Eng. J. 248, 297 (2014).

    Article  Google Scholar 

  2. S. Darvishmanesh, J. C. Jansen, F. Tasselli, E. Tocci, P. Luis, J. Degreve, E. Drioli, and B. Van der Bruggen, J. Membr. Sci. 379, 60 (2011).

    Article  CAS  Google Scholar 

  3. S. Darvishmanesh, F. Tasselli, J. C. Jansen, E. Tocci, F. Bazzarelli, P. Bernardo, P. Luis, J. Degreve, E. Drioli, and B. Van der Bruggen, J. Membr. Sci. 384, 89 (2011).

    Article  CAS  Google Scholar 

  4. C. Dizman, M. A. Tasdelen, and Y. Yagci, Polym. Int. 62, 991 (2013).

    Article  CAS  Google Scholar 

  5. www.basf.com/cn/documents/en/chinaplas/UltrasonESPproductbrochureEN.pdf (October 27, 2023).

  6. M. C. Nayak, A. M. Isloor, A. Moslehyani, and A. F. Ismail, J. Taiwan Inst. Chem. Eng. 77, 293 (2017).

    CAS  Google Scholar 

  7. S. Kiani, S. M. Mousavi, N. Shahtahmassebi, and E. Saljoughi, Desalin. Water Treat. 57, 16250 (2016).

    Article  CAS  Google Scholar 

  8. Y. Feng, G. Han, L. Zhang, S. B. Chen, T. S. Chung, M. Weber, C. Staudt, and C. Maletzko, Polymer 99, 72 (2016).

    Article  CAS  Google Scholar 

  9. S. Xiao, S. Yu, L. Yan, Y. Liu, and X. Tan, Chinese J. Chem. Eng. 25, 408 (2017).

    Article  CAS  Google Scholar 

  10. L. L. Hwang, J. C. Chen, and M. Y. Wey, Desalination 313, 166 (2013).

    Article  CAS  Google Scholar 

  11. O. Gronwald, I. Frost, M. Ulbricht, A. Kouchaki Shalmani, S. Panglisch, L. Grunig, U. Handge, V. Abetz, M. Heijnen, and M. Weber, Sep. Purif. Technol. 250, 117107 (2020).

    Article  CAS  Google Scholar 

  12. A. M. Isloor, A. F. Ismail, A. Obaid, and H. K. Fun, Desalin. Water Treat. 57, 19810 (2016).

    Google Scholar 

  13. Q. Yin, Q. Zhang, Z. Cui, W. Li, and W. Xing, Polymer 124, 128 (2017).

    Article  CAS  Google Scholar 

  14. D. L. Arockiasamy, M. Alhoshan, J. Alam, M. R. Muthumareeswaran, A. Figoli, and S. A. Kumar, Sep. Purif. Technol. 174, 529 (2017).

    Article  Google Scholar 

  15. Y. Tang, N. Widjojo, G. M. Shi, T. S. Chung, M. Weber, and C. Maletzko, J. Membr. Sci. 415, 686 (2012).

    Article  Google Scholar 

  16. N. Jullok, R. Van Hooghten, P. Luis, A. Volodin, C. Van Haesendonck, J. Vermant, and B. Van der Bruggen, J. Clean. Prod. 112, 4879 (2016).

    Article  CAS  Google Scholar 

  17. N. Jullok, S. Darvishmanesh, P. Luis, and B. Van der Bruggen, Chem. Eng. J. 175, 306 (2011).

    CAS  Google Scholar 

  18. N. Jullok, T. Deforche, P. Luis, and B. Van der Bruggen, Chem. Eng. Sci. 78, 14 (2012).

    Article  CAS  Google Scholar 

  19. A. K. Fritzsche, M. K. Murphy, C. A. Cruse, R. F. Malon, and R. E. Kesting, Gas Sep. Purif. 3, 106 (1989).

    Article  CAS  Google Scholar 

  20. T. H. Weng, H. H. Tseng, and M. Y. Wey, Int. J. Hydrogen Energy 33, 4178 (2008).

    Article  CAS  Google Scholar 

  21. N. A. A. Sani, W. J. Lau, and A. F. Ismail, RSC Adv. 5, 13000 (2015).

  22. N. A. A. Sani, W. J. Lau, and A. F. Ismail, J. Polym. Eng. 34, 489 (2014).

    Article  CAS  Google Scholar 

  23. Q. F. Alsalhy, J. M. Ali, A. A. Abbas, A. Rashed, B. V. D. Bruggen, and S. Balta, Desalin. Water Treat. 51, 6070 (2013).

    Article  CAS  Google Scholar 

  24. L. Luo, G. Han, T. S. Chung, M. Weber, C. Staudt, and C. Maletzko, J. Membr. Sci. 476, 162 (2015).

    Article  CAS  Google Scholar 

  25. T. Plisko, Y. Karslyan, and A. Bildyukevich, Materials 14, 5740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. T. Anokhina, A. Raeva, S. Sokolov, A. Storchun, M. Filatova, A. Zhansitov, Z. Kurdanova, K. Shakhmurzova, S. Khashirova, and I. Borisov, Membranes 12, 1113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. I. L. Borisov, D. N. Matveev, T. S. Anokhina, K. T. Shakhmurzova, A. A. Zhansitov, A. L. Slonov, Zh. I. Kurdanova, S. Yu. Khashirova, and V. V. Volkov, Membr. Membr. Techol. 5, 218 (2023).

    Article  CAS  Google Scholar 

  28. D. Matveev, A. Raeva, I. Borisov, V. Vasilevsky, Y. Matveeva, A. Zhansitov, S. Khashirova, and V. Volkov, Membranes 13, 412 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 22-19-00711, https://rscf.ru/project/22-19-00711/. This work was performed using the equipment of the Shared Research Center “Analytical Center of Deep Oil Processing and Petrochemistry,” Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Matveev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveev, D.N., Raeva, A.Y., Zhansitov, A.A. et al. Influence of the Chemical Structure of Terminal Groups on the Properties of Poly(phenylene sulfone) Ultrafiltration Membranes. Membr. Membr. Technol. 6, 104–111 (2024). https://doi.org/10.1134/S2517751624020069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751624020069

Keywords:

Navigation