Skip to main content
Log in

Testing of Polymer Film–Sulfonated Polystyrene Proton-Exchange Composite Membranes in a Direct Methanol Fuel Cell at 60°C. Methanol Crossover

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The coefficients of diffusion permeability of methanol through the synthesized polymer film–sulfonated polystyrene composite membranes and a Nafion-115 membrane are measured. For several composite membranes with significantly different transport properties, the values of the diffusion flux of methanol qdiff through these membranes under the conditions of a direct methanol fuel cell (DMFC) at 60°C and a concentration of the feed solution of 1–2 M are calculated. Direct measurements of the crossover current and methanol crossover qCVA in a DMFC based on these membranes are carried out by cyclic voltammetry (CVA). It is found that the values of qCVA are on average by 15% lower than the corresponding values of qdiff calculated for each membrane based on its individual parameters (area, thickness, permeability coefficient of methanol). It is proposed to explain the observed ratio qCVA < qdiff by the experimentally uncontrolled and, probably, incomplete oxidation of methanol at the cathode. It can be concluded based on the obtained data that the experimental values of the crossover qCVA can noticeably differ from calculated qdiff and real values of methanol crossover in a DMFC without monitoring the degree of oxidation of methanol at the DMFC cathode. A comparative study of the current–voltage characteristics of DMFCs based on the synthesized composite membranes with significantly different transport properties and a Nafion-115 membrane is carried out. It is found that, at 60°C and a concentration of the feed solution of 1 M, the value of methanol crossover has practically no effect on the current–voltage characteristics of the DMFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. Kraytsberg and Y. Ein-Eli, Energy Fuel 28, 7303 (2014).

    Article  CAS  Google Scholar 

  2. S. P. Filippov and A. B. Yaroslavtsev, Russ. Chem. Rev. 90, 627 (2021).

    Article  Google Scholar 

  3. L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells 1, 5 (2001).

    Article  CAS  Google Scholar 

  4. A. S. Aricò, S. Srinivasan, and V. Antonucci, Fuel Cells 1, 133 (2001).

    Article  Google Scholar 

  5. M. S. Alias, S. K. Kamarudin, A. M. Zainoodin, and M. S. Masdar, Int. J. Hydrogen Energy 45, 19620 (2020).

    Article  CAS  Google Scholar 

  6. J. Zhou, J. Cao, Y. Zhang, J. Liu, J. Chen, M. Li, W. Wang, and X. Liu, Renew. Sust. Energ. Rev. 138, 110660 (2021).

  7. K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. A. Kusoglu and A. Z. Weber, Chem. Rev. 117, 987 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. N. W. Deluca and Y. A. Elabd, J. Polym. Sci. Pol. Phys. 44, 2201 (2006).

    Article  CAS  Google Scholar 

  10. G. H. Byun, J. A. Kim, N. Y. Kim, Y. S. Cho, and C. R. Park, Mater. Today Energy 17, 100483 (2020).

    Article  Google Scholar 

  11. M. M. Nasef, S. A. Gursel, D. Karabell, and O. Guven, Progr. Polym. Sci. 63, 1 (2016).

    Article  CAS  Google Scholar 

  12. M. M. Nasef, J. Appl. Membr. Sci. Technol. 26, 51 (2022).

    Article  Google Scholar 

  13. M. M. Nasef, N. A. Zubir, A. F. Ismail, M. Khayet, K. Z. M. Dahlan, H. Saidi, R. Rohani, T. I. S. Ngah, and N. A. Sulaiman, J. Membr. Sci. 268, 96 (2006).

    Article  CAS  Google Scholar 

  14. S. A. Gursel, L. Gubler, and B. Gupta, and G. G. Scherer, Adv. Polym. Sci. 215, 157 (2008).

    CAS  Google Scholar 

  15. T. Yamaki, S. Sawada, M. Asano, Y. Maekawa, M. Yoshida, L. Gubler, S. Alkan-Gursel, and G. G. Scherer, ECS Transact. 25, 1439 (2009).

  16. D. V. Golubenko, P. A. Yurova, A. V. Desyatov, I. A. Stenina, S. A. Kosarev, and A. B. Yaroslavtsev, Membr. Membr. Technol. 4, 398 (2022).

    Article  CAS  Google Scholar 

  17. A. N. Ponomarev, E. F. Abdrashitov, D. A. Kritskaya, V. C. Bokun, E. A. Sanginov, and Y. A. Dobrovol’skii, Russ. J. Electrochem. 53, 589 (2017).

    Article  CAS  Google Scholar 

  18. E. F. Abdrashitov, V. C. Bokun, D. A. Kritskaya, E. A. Sanginov, A. N. Ponomarev, and Y. A. Dobrovolsky, Solid State Ionics 251, 9 (2013).

    Article  CAS  Google Scholar 

  19. E. F. Abdrashitov, D. A. Kritskaya, V. C. Bokun, A. N. Ponomarev, K. S. Novikova, E. A. Sanginov, and Y. A. Dobrovolsky, Solid State Ionics 286, 135 (2016).

    Article  CAS  Google Scholar 

  20. X. Ren, T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, J. Electrochem. Soc. 147, 466 (2000).

    Article  CAS  Google Scholar 

  21. S. Almheiri and H. Liu, Int. J. Hydrogen Energy 40, 10969 (2015).

    Article  CAS  Google Scholar 

  22. T. Génevé, C. Turpin, J. Régnier, O. Rallières, O. Verdu, A. Rakotondrainibe, and K. Lombard, Fuel Cells 17, 210 (2017).

    Article  Google Scholar 

  23. B. A. Braz, V. B. Oliveira, and A. M. F. R. Pinto, Energy 208, 112394 (2020).

    Article  Google Scholar 

  24. A. N. Ponomarev, D. A. Kritskaya, E. F. Abdrashitov, V. C. Bokun, E. A. Sanginov, K. S. Novikova, N. N. Dremova, and Y. A. Dobrovolsky, J. Appl. Pol. Sci. 137, 49563 (2020).

    Article  CAS  Google Scholar 

  25. K. S. Novikova, E. F. Abdrashitov, D. A. Kritskaya, A. N. Ponomarev, E. A. Sanginov, and Yu. A. Dobrovol’skii, Russ. J. Electrochem. 57, 1047 (2021).

    Article  CAS  Google Scholar 

  26. C. F. Wells, Thermochim. Acta 200, 443 (1992).

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed in line with a state task to the Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (reg. no. 122040500069-7) and Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (reg. no. AAAA-A19-119061890019-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kritskaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kritskaya, D.A., Novikova, K.S., Sanginov, E.A. et al. Testing of Polymer Film–Sulfonated Polystyrene Proton-Exchange Composite Membranes in a Direct Methanol Fuel Cell at 60°C. Methanol Crossover. Membr. Membr. Technol. 6, 112–119 (2024). https://doi.org/10.1134/S2517751624020045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751624020045

Keywords:

Navigation