Skip to main content
Log in

Ceramic Substrates for Filtration Membranes Based on Fine Fly Ash Microspheres

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

A procedure has been proposed for producing ceramic substrates for filtration membranes based on a narrow fraction of fine fly ash microspheres using cold uniaxial pressing followed by high-temperature firing. It has been shown that increasing the sintering temperature from 1000 to 1150°C leads to a decrease in open porosity from 40 to 24%, a decrease in the average pore size from 1.60 to 0.34 μm, and an increase in the compressive strength from 9.5 to 159 MPa. The resulting substrates are characterized by water permeability values of 1210, 310, 240, 170 L m−2 h−1 bar−1 at sintering temperatures of 1000, 1050, 1100 and 1150°C, respectively. Experiments on filtration of aqueous suspensions of fine microspheres (dav = 2.5 µm) and microsilica (dav = 1.9 μm) through a substrate produced at a sintering temperature of 1150°C have shown the rejection close to 100%. The proposed methodology for using ash waste in the production of membrane materials promotes the development of technologies for the integrated processing of thermal energy waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. H. Strathmann, Introduction to Membrane Science and Technology (Wiley-VCH, Weinheim, Germany, 2011).

    Google Scholar 

  2. R. W. Baker, Membrane Technology and Applications (John Wiley & Sons, Chichester, England, 2004).

    Book  Google Scholar 

  3. D. M. Warsinger and S. Chakraborty, et al., Progr. Polym. Sci. 81, 209 (2018).

    Article  CAS  Google Scholar 

  4. K. Li, Ceramic Membranes for Separation and Reaction (John Wiley & Sons, Chichester, England, 2007).

    Book  Google Scholar 

  5. T. Arumugham, N. J. Kaleekkal, S. Gopal, J. K. R. Nambikkattu, A. M. Aboulella, S. R. Wickramasinghe, and F. Banat, J. Environ. Manage. 293, 112925 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. V. Gitis and G. Rothenberg, Ceramic Membranes: New Opportunities and Practical Applications (Wiley-VCH, Weinheim, Germany, 2016).

    Book  Google Scholar 

  7. A. Abdullayev, M. F. Bekheet, D. A. H. Hanaor, and A. Gurlo, Membranes 9, 105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. C. Almandoz, C. L. Pagliero, N. A. Ochoa, and J. Marchese, Ceram. Int. 41, 5621 (2015).

    Article  CAS  Google Scholar 

  9. I. P. Garmash, Yu. N. Kryuchkov, and V. N. Pavlikov, Glass Ceram. 52, 150 (1995).

    Article  Google Scholar 

  10. S. Benfer, P. Arki, and G. Tomandl, Adv. Eng. Mater. 6, 495 (2004).

    Article  CAS  Google Scholar 

  11. G. G. Kagramanov, V. V. Nazarov, E. S. Lukin, and E. M. Pershikova, Steklo Keram. 74, 16 (2001).

    Google Scholar 

  12. A. I. Ivanets and V. E. Agabekov, Pet. Chem. 57, 117 (2017).

    Article  CAS  Google Scholar 

  13. A. I. Ivanets, Ves. Nats. Akad. Navuk Bel., Ser. Khim. Navuk 57, 25 (2021).

    Google Scholar 

  14. A.I. Rat’ko, A. I. Ivanets, I. O. Sakhar, D. Yu. Davydov, V. V. Toropova, and A. V. Radkevich, Prot. Met. Phys. Chem. Surf 48, 553 (2012).

  15. A. I. Ivanets, T. A. Azarova, V. E. Agabekov, et al., Ceram. Int. 40, 12343 (2014).

    Article  CAS  Google Scholar 

  16. A. Majouli, S. A. Younssi, S. Tahiri, A. Albizane, H. Loukili, and M. Belhaj, Desalination 277, 61 (2011).

    Article  CAS  Google Scholar 

  17. A. Majouli, S. Tahiri, S. A. Younssi, H. Loukili, and A. Albizane, Ceram. Int. 38, 4295 (2012).

    Article  CAS  Google Scholar 

  18. S. Saja, A. Bouazizi, B. Achiou, M. Ouammou, A. Albizane, J. Bennazha, and A. Younssi, J. Environ. Chem. Eng. 6, 451 (2018).

    Article  CAS  Google Scholar 

  19. N. P. Fadeeva, M. V. Pavlov, I. A. Kharchenko, M. M. Simunin, K. A. Shabanova, V. F. Pavlov, and I. I. Ryzhkov, Membr. Membr. Technol. 4, 170 (2022).

    Article  CAS  Google Scholar 

  20. R. Chihi, I. Blidi, M. Trabelsi-Ayadi, and F. Ayari, C. R. Chimie 22, 188 (2019).

    Article  CAS  Google Scholar 

  21. R. Meghnani, M. Kumar, G. Pugazhenthi, and V. Dhakshinamoorthy, Sep. Purif. Technol. 256, 117814 (2021).

    Article  CAS  Google Scholar 

  22. Z. T. Yao, X. S. Ji, P. K. Sarker, J. H. Tang, L. Q. Ge, M. S. Xia, and Y. Q. Xi, Earth-Sci. Rev. 141, 105 (2015).

    Article  Google Scholar 

  23. M. Ahmaruzzaman, Progr. Energy Combust. Sci. 36, 327 (2010).

    Article  CAS  Google Scholar 

  24. R. S. Blissett and N. A. Rowson, Fuel 97, 1 (2012).

    Article  CAS  Google Scholar 

  25. N. Moreno, X. Querol, J. M. Andres, K. Stanton, M. Towler, H. Nugteren, M. Janssen-Jurkovicova, and R. Jones, Fuel 84, 1351 (2005).

    Article  CAS  Google Scholar 

  26. P. Thangavel, D. Park, and Y. C. Lee, Int. J. Environ. Res. Public Health 19, 7511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Wang, C. Zhang, and J. Chen, J. Mater. Sci. Technol. 30, 1208 (2014).

    Article  Google Scholar 

  28. T. F. Choo, SallehM. A. Mohd, K. Y. Kok, K. A. Matori, and S. Abdul Rashid, Materials 13, 5218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Z. Wei, J. Hou, and Z. Zhu, J. Alloys Compd. 683, 474 (2016).

    Article  CAS  Google Scholar 

  30. J. Huang, H. Chen, J. Yang, T. Zhou, and H. Zhang, Ceram. Int. 49, 15655 (2023).

    Article  CAS  Google Scholar 

  31. J. Fang, G. Qin, W. Wei, and X. Zhao, Sep. Purif. Technol. 80, 585 (2011).

    Article  CAS  Google Scholar 

  32. J. Fang, G. Qin, W. Wei, X. Zhao, and L. Jiang, Desalination 311, 113 (2013).

    Article  CAS  Google Scholar 

  33. D. Zou, X. Chen, E. Drioli, M. Qiu, and Y. Fan, Ind. Eng. Chem. Res. 58, 8712 (2019).

    Article  CAS  Google Scholar 

  34. O. A. Kushnerova, G. V. Akimochkina, E. V. Fomenko, E. V. Rabchevskii, and A. G. Anshits, Solid Fuel Chem. 52, 188 (2018).

    Article  CAS  Google Scholar 

  35. E. V. Fomenko, N. N. Anshits, O. A. Kushnerova, G. V. Akimochkina, S. V. Kukhtetskiy, and A. G. Anshits, Energy Fuels 33, 3584 (2019).

    Article  CAS  Google Scholar 

  36. GOST (State Standard) 5382–2019, Cements and Materials for Cement Production (Moscow, 2019).

    Google Scholar 

  37. E. Fomenko, N. Anshits, L. Solovyov, O. A. Mikhaylova, and A. G. Anshits, Energy Fuels 27, 5440 (2013).

    Article  CAS  Google Scholar 

  38. DIN 51007-2019. Thermal analysis, Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC), General Principles.

  39. GOST (State Standard) R 55661–2013, Solid Mineral Fuel. Determination of Ash Content (Moscow, 2014).

    Google Scholar 

  40. E. V. Fomenko, N. N. Anshits, L. A. Solovyov, Y. V. Knyazev, S. V. Semenov, O. A. Bayukov, and A. G. Anshits, ACS Omega 6, 20076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. J. Glass and K. G. Ewsuk, MRS Bull. 22, 24 (1997).

    Article  CAS  Google Scholar 

  42. GOST (State Standard) 7025–91, Ceramic and Silicate Bricks and Stones (Moscow, 2006).

    Google Scholar 

  43. GOST (State Standard) 2409–2014, Refractories. Method for Determining Apparent Density, Open and Total Porosity, Water Absorption (Moscow, 2014).

    Google Scholar 

  44. GOST (State Standard) R 57606–2017, Ceramic composites. Compression test method at normal temperature.

  45. W. Zhou, L. Zhang, P. Wu, Y. Cai, X. Zhao, and C. Yao, Materials 12, 2161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M. I. M. Esham, A. L. Ahmad, and M. H. D. Othman, Membranes 11, 739 (2021).

    Article  Google Scholar 

  47. W. Zhou, L. Zhang, P. Wu, Y. Liu, Y. Cai, and X. Zhaoa, J. Hazard. Mater. 400, 123183 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. N. Malik, V. K. Bulasara, and S. Basu, Ceram. Int. 46, 6889 (2020).

    Article  CAS  Google Scholar 

  49. D. Zou, M. Qiu, X. Chen, E. Drioli, and Y. Fan, Sep. Purif. Technol. 210, 511 (2019).

    Article  CAS  Google Scholar 

  50. D. Zou, W. Fan, J. Xu, E. Drioli, X. Chen, M. Qiu, and Y. Fan, J. Membr. Sci. 621, 118954 (2021).

    Article  CAS  Google Scholar 

  51. A. Agarwal, A. Samanta, B. K. Nandi, and A. Mandal, J. Pet. Sci. Eng. 194, 107475 (2020).

    CAS  Google Scholar 

  52. W. Fan, D. Zou, J. Xu, X. Chen, M. Qiu, and Y. Fan, Membranes 11, 711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S. Fakhfakh, S. Baklouti, S. Baklouti, and J. Bouaziz, Adv. Appl. Ceram. 109, 31 (2010).

    Article  CAS  Google Scholar 

  54. A. Bouazizi, M. Breida, A. Karim, B. Achiou, M. Ouammou, J. I. Calvao, A. Aaddane, K. Khiat, and S. Alami Younssi, Ceram. Int. 43, 1479 (2017).

    Article  CAS  Google Scholar 

  55. F. Bouzerara, A. Harabi, B. Ghouli, N. Medjemem, B. Boudaira, and S. Condom, Proc. Eng. 33, 278 (2012).

    Article  CAS  Google Scholar 

  56. D. V. Lebedev, A. V. Shiverskiy, M. M. Simunin, V. S. Solodovnichenko, V. A. Parfenov, V. V. Bykanova, S. V. Khartov, and I. I. Ryzhkov, Pet. Chem. 57, 306 (2017).

    Article  CAS  Google Scholar 

  57. D. V. Lebedev, V. S. Solodovnichenko, M. M. Simunin, and I. I. Ryzhkov, Pet. Chem. 58, 474 (2018).

    Article  CAS  Google Scholar 

  58. I. I. Ryzhkov, M. A. Shchurkina, E. V. Mikhlina, M. M. Simunin, and I. V. Nemtsev, Electrochim. Acta 375, 137970 (2021).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Aerodynamic separation of fly ash was performed at the Institute of Chemistry and Chemical Technology SB RAS (project FWES-2021-0013).

Funding

The work was carried out with the support of the Russian Science Foundation, project no. 23-19-00269, using the equipment of the Krasnoyarsk Regional Center for Collective Use at the Krasnoyarsk Federal Research Center of the Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ryzhkov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomenko, E.V., Akimochkina, G.V., Anshits, A.G. et al. Ceramic Substrates for Filtration Membranes Based on Fine Fly Ash Microspheres. Membr. Membr. Technol. 6, 71–83 (2024). https://doi.org/10.1134/S2517751624020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751624020033

Keywords:

Navigation