Skip to main content
Log in

Hemocompatibility of Promising for ECMO High Permeable Polyacetylenes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

A comprehensive study of hemocompatibility and gas permeability of 1,2-disubstituted polyacetylenes, namely poly(1-trimethylsilyl-1-propyne) and poly(4-methyl-2-pentyne), was carried out. The polymers were synthesized started from 1-trimethylsilyl-1-propyne and 4-methyl-2-pentynemonomers on the catalytic systems NbCl5 and NbCl5/n-Bu4Sn to form homopolymers containing 50 and 55% cis-units, respectively. The comparison of the obtained polyacetylenes and the thermoplastic polyolefin, poly(4-methyl-1-pentene) that currently is widely used as a thin-film coating of hollow fiber membranes for extracorporeal membrane oxygenation of blood (ECMO), was performed. The investigated polymers are highly hemocompatible as shown by morphofunctional status of blood cells analysis and mesenchymal multipotent stromal bone marrow cells culture of tissue donors. In terms of hemocompatibility, poly(4-methyl-2-pentyne) was superior to poly(1-trimethylsilyl-1-propyne) and was comparable to poly(4-methyl-1-pentene). The studied polyacetylenes were shown to be significantly more permeable on oxygen and carbon dioxide than poly(4-methyl-1-pentene): poly(1-trimethylsilyl-1-propyne) is more permeable in 320 and 400 times, whereas poly(4-methyl-2-pentyne) is more permeable in 60 and 90 times, respectively. These parameters can significantly reduce the contact area of membranes with blood and reduce the size of oxygenators. Since poly(4-methyl-2-pentyne) has the high gas permeability in combination with the hemocompatibility comparable to poly(4-methyl-1-pentene), this polymer can be recommended as a promising material of a selective membrane layer for ECMO technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. S. V. Got’e, V. N. Poptsov, and E. A. Spirina, Extracorporeal Membrane Oxygenation in Cardiac Surgery and Transplantology (Triada, Moscow, Tver, 2013) [in Russian].

    Google Scholar 

  2. A. K. Evseev, S. V. Zhuravel, A. Yu. Alentiev, I. V. Goroncharovskaya, and S. S. Petrikov, Membr. Membr. Technol. 1, 201 (2019).

    Article  CAS  Google Scholar 

  3. M. Cypel and S. Keshavjee, in Regenerative Medicine Applications in Organ Transplantation (Elsevier, 2014).

    Google Scholar 

  4. T. Kolobow and R. L. Bowman, Trans. Am. Soc. Artif. Intern. Organs 9, 238 (1963).

    CAS  PubMed  Google Scholar 

  5. L. Lequier, S. B. Horton, D. M. McMullan, and R. H. Bartlett, Pediatr. Crit. Care Med. 14, S7 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. W. L. Robb, Ann. New York Acad. Sci. 146, 119 (1968).

    Article  CAS  Google Scholar 

  7. E. Khoshbin, C. Westrope, S. Pooboni, D. Machin, H. Killer, G. J. Peek, A. W. Sosnowski, and R. K. Firmin, Perfusion 20, 129 (2005).

    Article  PubMed  Google Scholar 

  8. M.-C. Belanger and Y. Marois, J. Biomed. Mater. Res 58, 467 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. J. Kamo, M. Uchida, T. Hirai, H. Yosida, K. Kamada, and T. Takemura, Art. Organs 14, 369 (1990).

    Article  CAS  Google Scholar 

  10. H. Kawakami, Y. Mori, J. Takagi, S. Nagaoka, T. Kanamori, T. Shinbo, and S. Kubota, ASAIO J. 43, M490 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. K. Lehle, A. Philipp, O. Gleich, A. Holzamer, T. Muller, T. Bein, and C. Schmid, ASAIO J. 54, 612 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. L. Sonstevold, M. Czerkies, E. Escobedo-Cousin, S. Blonski, and E. Vereshchagina, Micromachines 14, 532 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. B. P. Nguyen Thi, B. T. Duy Nguyen, I.-S. Jeong, and J. F. Kim, Acta Biomater. 152, 19 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. L. McKeen, Permeability Properties of Plastics and Elastomers, 4th Ed. (Elsevier, William Andrew, Amsterdam, Boston, 2017).

  15. A. Puleo, D. Paul, and P. Wong, Polymer 30, 1357 (1989).

    Article  CAS  Google Scholar 

  16. INHS RAS, Database Gas Separation Parameters of Glassy Polymers, Informregister of the Russian Federation, 1998, No. 3585. http://www.ips.ac.ru/index. php?option=com_content&task=view&id=853&lang= russian.

  17. A. Yu. Alentiev, N. A. Belov, R. Yu. Nikiforov, E. V. Polunin, N. V. Borovkova, A. K. Evseev, M. S. Makarov, I. V. Goroncharovskaya, M. V. Storozheva, and V. S. Zhuravel, Pet. Chem. 58, 740 (2018).

    Article  CAS  Google Scholar 

  18. A. Yu. Alentiev, Yu. G. Bogdanova, V. D. Dolzhikova, N. A. Belov, R. Yu. Nikiforov, D. A. Alentiev, G. O. Karpov, M. V. Bermeshev, N. V. Borovkova, A. K. Evseev, M. S. Makarov, I. V. Goroncharovskaya, M. V. Storozheva, and S. V. Zhuravel, Membr. Membr. Technol. 2, 368 (2020).

    Article  CAS  Google Scholar 

  19. K. Nagai, T. Masuda, T. Nakagawa, B. D. Freeman, and I. Pinnau, Progr. Polym. Sci. 26, 721 (2001).

    Article  CAS  Google Scholar 

  20. A. Morisato and I. Pinnau, J. Membr. Sci. 121, 243 (1996).

    Article  CAS  Google Scholar 

  21. S. M. Matson, V. P. Makrushin, I. S. Levin, N. A. Zhi-lyaeva, E. G. Litvinova, and V. S. Khotimskiy, Polymer 202, 122682 (2020).

    Article  CAS  Google Scholar 

  22. E. G. Litvinova, V. M. Melekhov, N. V. Petrushanska, G. V. Roshcheva, V. B. Fedotov, V. Sh. Fel’dblyum, and V. S. Khotimskii, RF Patent RU 1823457 C, August 20, 1995.

  23. A. A. Surovtsev, N. V. Petrushanskaya, O. P. Karpov, V. S. Khotimskii, and E. G. Litvinova, RF Patent RU 2228323 C2, May 10, 2004.

  24. V. S. Khotimsky, M. V. Tchirkova, E. G. Litvinova, A. I. Rebrov, and G. N. Bondarenko, J. Polym. Sci. A Polym. Chem. 41, 2133 (2003).

    Article  CAS  Google Scholar 

  25. V. S. Khotimskii, S. M. Matson, E. G. Litvinova, G. N. Bondarenko, and A. I. Rebrov, Vysokomol. Soed., Ser. A 45, 1259 (2003).

    CAS  Google Scholar 

  26. V. P. Makrushin, V. K. Chernikov, I. S. Levin, A. A. Kossov, and S. M. Matson, Membr. Membr. Technol. 5, 148 (2023).

    Article  CAS  Google Scholar 

  27. S. Yu. Markova, N. M. Smirnova, and V. V. Teplyakov, Pet. Chem. 56, 948 (2016).

    Article  CAS  Google Scholar 

  28. S. Yu. Markova, T. Gries, and V. V. Teplyakov, J. Membr. Sci. 598, 117754 (2020).

    Article  CAS  Google Scholar 

  29. M. Harboe, Scand. J. Clin. Lab. Invest. 11, 66 (1959).

    Article  CAS  PubMed  Google Scholar 

  30. M. S. Makarov, V. B. Khvatov, O. I. Konyushko, N. V. Borovkova, M. V. Storozheva, and I. N. Pono-marev, RF Patent RU 2484472 C1, 2013.

  31. M. Sh. Khubutiya, M. S. Makarov, V. B. Khvatov, I. V. Vysochin, E. N. Kobzeva, N. V. Borovkova, and O. I. Konyushko, RF Patent RU 2485502 C1, 2013.

  32. O. I. Murygina, E. R. Zhukova, O. V. Petrova, and D. M. Nikulina, Sci. Innov. Med. 4, 4 (2019).

    Article  Google Scholar 

Download references

Funding

This work was financally supported by the State Assignment of the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Alentiev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alentiev, A.Y., Evseev, A.K., Matson, S.M. et al. Hemocompatibility of Promising for ECMO High Permeable Polyacetylenes. Membr. Membr. Technol. 6, 63–70 (2024). https://doi.org/10.1134/S2517751624020021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751624020021

Keywords:

Navigation