Skip to main content
Log in

Modeling of Ion Transport in a Three-Layer System with an Ion-Exchange Membrane Based on the Nernst–Planck and Displacement Current Equations

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Modeling of ion transport in a three-layer system containing an ion-exchange membrane and two adjacent diffusion layers makes it possible to describe the permselectivity of the membrane by determining its fixed charge density. For theoretical analysis of ion transport in such systems, the Nernst–Planck and Poisson equations are widely used. The article shows that, in the galvanodynamic mode of operation of the membrane system when the density of the flowing current is specified, the Poisson equation in the ion transport model can be replaced by the equation for the displacement current. A new model is constructed in the form of a boundary value problem for the system of the Nernst–Planck and displacement current equations, based on which the concentrations of ions, electric field strength, space charge density, and chronopotentiogram of the ion-exchange membrane and adjacent diffusion layers in a direct current mode are numerically calculated. The calculation results of the proposed model are in a good agreement with the results of the modeling based on the previously described approach using the Nernst–Planck and Poisson equations as well as with the analytical assessment of the transition time. It is shown that, in the case of the three-layer geometry of the problem, the required accuracy of the numerical calculation using the proposed model is achieved with a smaller number of computational mesh elements and takes less (about 26.7-fold for the system parameters under consideration) processor time in comparison with the model based on the Nernst–Planck and Poisson equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. A1.

REFERENCES

  1. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, Nat. Cell Biol. 452, 301 (2008).

    CAS  Google Scholar 

  2. S. J. Kim, Y.-A. Song, and J. Han, Chem. Soc. Rev. 39, 912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Elimelech and W. A. Phillip, Science 333, 712 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. L. Gurreri, A. Tamburini, A. Cipollina, and G. Micale, Membranes 10, 146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Z. Slouka, S. Senapati, and H. C. Chang, Annu. Rev. Anal. Chem. 7, 317 (2014).

    Article  CAS  Google Scholar 

  6. A. B. Yaroslavtsev, V. V. Nikonenko, and V. I. Zabolotsky, Russ. Chem. Rev. 72, 393 (2003).

    Article  CAS  Google Scholar 

  7. H. Strathmann, Membr. Sci. Technol. 9, 23 (2004).

    Article  Google Scholar 

  8. J. Masliyah and S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena (John Wiley & Sons, Hoboken, NJ, USA, 2006).

    Book  Google Scholar 

  9. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems, 3rd Ed. (John Wiley & Sons, Honoken, NJ, USA, 2004).

    Google Scholar 

  10. V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  11. I. I. Ryzhkov and A. V. Minakov, Zh. SFU, Ser. Mat. Fiz. 10, 186 (2007).

    Google Scholar 

  12. A. N. Filippov, Colloid J. 76, 600 (2014).

    Article  CAS  Google Scholar 

  13. I. Rubinstein and L. Shtilman, J. Chem. Soc., Faraday Trans. 75, 231 (1979).

    Article  CAS  Google Scholar 

  14. J. A. Manzanares, W. D. Murphy, S. Mafe, and H. Reiss, J. Phys. Chem. 97, 8524 (1993).

    Article  CAS  Google Scholar 

  15. V. V. Nikonenko, S. A. Mareev, N. D. Pis’menskaya, A. M. Uzdenova, A. V. Kovalenko, M. K. Urtenov, and G. Pourcelly, Russ. J. Electrochem. 53, 1122 (2017).

    Article  CAS  Google Scholar 

  16. A. Mani and K. M. Wang, Annu. Rev. Fluid Mech. 52, 509 (2020).

    Article  Google Scholar 

  17. A. M. Uzdenova, A. V. Kovalenko, M. Kh. Urtenov, and V. V. Nikonenko, Russ. J. Electrochem. 53, 1122 (2017).

    Article  Google Scholar 

  18. H. Cohen and J. W. Cooley, Biophys. J. 5, 145 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. T. R. Brumleve and R. P. Buck, J. Electroanal. Chem. 90, 1 (1978).

    Article  CAS  Google Scholar 

  20. M. Kh. Urtenov, Boundary Value Problems for Systems of Nernst–Planck–Poisson Equations (Factorization, Decomposition, Models, Numerical Analysis) (Universervis, Krasnodar, 1998) [in Russian].

    Google Scholar 

  21. A. V. Lavrent’ev, A. V. Pis’menskii, and M. Kh. Urtenov, Mathematical Modeling of Transport in Electromembrane Systems Taking into Account Convective Flows (KubGTU, Krasnodar, 2006) [in Russian].

  22. A. V. Kovalenko, A. A. Khromykh, and M. Kh. Urtenov, Dokl. Akad. Nauk. 458, 526 (2014).

    Google Scholar 

  23. A. V. Lavrent’ev, M. Kh. Urtenov, and T. L. Shaposhnikova, Global. Nauch. Pot. 2, 66 (2014).

    Google Scholar 

  24. A. M. Uzdenova, Membranes 13, 421 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. W. Liu, Y. Zhou, and P. Shi, Phys. Rev. E 101, 043105 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. M. Urtenov, N. Chubyr, and V. Gudza, Membranes 10, 10080189 (2020).

    Google Scholar 

  27. A. Kovalenko, M. Wessling, V. Nikonenko, S. Mareev, I. Moroz, E. Evdochenko, and M. K. Urtenov, J. Membr. Sci. 636, 119583 (2021).

    Article  CAS  Google Scholar 

  28. A. Uzdenova, A. Kovalenko, and M. Urtenov, Membranes 12, 1125 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E. A. Demekhin, G. S. Ganchenko, and E. N. Kalaydin, Phys. Fluids 30, 082006 (2018).

    Article  Google Scholar 

  30. J. Schiffbauer, E. Demekhin, and G. Ganchenko, Int. J. Mol. Sci. 21, 6526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. N. Lemay, S. Mikhaylin, S. Mareev, N. Pismenskaya, V. Nikonenko, and L. Bazinet, J. Membr. Sci. 603, 117878 (2020).

    Article  CAS  Google Scholar 

  32. A. Gorobchenko, S. Mareev, and V. Nikonenko, Membranes 11, 225 (2021).

    Article  Google Scholar 

  33. A. Uzdenova, A. Kovalenko, M. Urtenov, and V. Nikonenko, Membranes 8, 84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. I. Rubinstein and B. Zaltzman, Phys. Rev. E 62, 2238 (2000).

    Article  CAS  Google Scholar 

  35. V. V. Nikonenko, V. I. Vasil’eva, E. M. Akberova, A. M. Uzdenova, M. K. Urtenov, A. V. Kovalenko, N. D. Pismenskaya, S. A. Mareev, and G. Pourcelly, Adv. Colloid Interface Sci. 235, 233 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. S. Koter, Sep. Purif. Technol. 2223, 643 (2001).

  37. N. A. Kononenko and N. P. Berezina, Methods for Studying and Characterizing Synthetic Polymer Membranes. Membranes and Membrane Technologies (Nauchnyi mir, Moscow, 2013) [in Russian].

  38. A. N. Filippov, E. M. Akberova, and V. I. Vasil’eva, Polymers 15, 3390 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. J. Krol, M. Wessling, and H. Strathmann, J. Membr. Sci. 162, 155 (1999).

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by grant no. 23-29-00534 from the Russian Science Foundation, https://rscf.ru/en/project/23-29-00534/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Uzdenova.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Translated by E. Boltukhina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzdenova, A.M. Modeling of Ion Transport in a Three-Layer System with an Ion-Exchange Membrane Based on the Nernst–Planck and Displacement Current Equations. Membr. Membr. Technol. 6, 1–8 (2024). https://doi.org/10.1134/S2517751624010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751624010074

Keywords:

Navigation