Skip to main content
Log in

Perfluorosulfonic Acid Polymer Membranes: Microstructure and Basic Functional Properties

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The progress of modern technologies and the requirements imposed on the production ecology demand the development of new ion-exchange membrane polymer materials with a set of desired properties. These materials are used in liquid and gas separation and purification systems, chemical and electrochemical syntheses, and alternative energetics. Membrane materials based on perfluorosulfonic acid polymers (PFSA) possess a set of characteristics necessary for their practical application: high ionic conductivity and selectivity and good chemical stability, strength, and elasticity. This review addresses the microstructure of PFSA membranes and its change induced by water and solvent uptake and discusses the features of ion and gas transport, mechanical properties, and the dependence of a number of parameters on polymer chain length and ionic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. M. Robeson, Polymer Science: A Comprehensive Reference, vol. 8 (Elsevier, The Netherlands, Amsterdam, 2012).

    Google Scholar 

  2. M. J. Quast and A. Mueller, J. Polym. Sci. A, Polym. Chem. 57, 961 (2019).

    Article  CAS  Google Scholar 

  3. Yu. P. Yampolskii, N. A. Belov, and A. Yu. Alentiev, Russ. Chem. Rev. 88, 387 (2019).

    Article  CAS  Google Scholar 

  4. S. P. Filippov and A. B. Yaroslavtsev, Russ. Chem. Rev. 90, 627 (2021).

    Article  Google Scholar 

  5. H. Zhang and P. K. Shen, Chem. Rev. 112, 2780 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. G. Pourcelly, V. V. Nikonenko, N. D. Pismenskaya, and A. B. Yaroslavtsev, Ionic Interactions in Natural and Synthetic Macromolecules (John Wiley & Sons, Inc., 2012).

    Google Scholar 

  7. N. Guerrero Moreno, M. Cisneros Molina, D. Gervasio, and J. F. Pérez Robles, Renew. Sustain. Energy Rev. 52, 897 (2015).

    Article  CAS  Google Scholar 

  8. X. Shi, O. C. Esan, X. Huo, Y. Ma, Z. Pan, L. An, and T. S. Zhao, Prog. Energy Combust. Sci. 85, 100926 (2021).

    Article  Google Scholar 

  9. S. Feng and G. A. Voth, J. Phys. Chem. B 115, 5903 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. K. A. Page, B. W. Rowe, K. A. Masser, and A. Faraone, J. Polym. Sci. B, Polym. Phys. 52, 624 (2014).

    Article  CAS  Google Scholar 

  11. B. R. Matos, E. I. Santiago, J. F. Q. Rey, C. H. Scuracchio, G. L. Mantovani, L. A. Hirano, and F. C. Fonseca, J. Polym. Sci. B, Polym. Phys. 53, 822 (2015).

    Article  CAS  Google Scholar 

  12. M. Mukaddam, E. Litwiller, and I. Pinnau, Macromolecules 49, 280 (2016).

    Article  CAS  Google Scholar 

  13. A. Kusoglu and A. Z. Weber, Chem. Rev. 117, 987 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. I. A. Prikhno, E. Yu. Safronova, I. A. Stenina, P. A. Yurova, and A. B. Yaroslavtsev, Membr. Membr. Technol. 10, 265 (2020).

    Article  Google Scholar 

  15. J. Li, M. Pan, and H. Tang, RSC Adv. 4, 3944 (2014).

  16. A. B. Yaroslavtsev, I. A. Stenina, and D. V. Golubenko, Pure Appl. Chem. 92, 1147 (2020).

    Article  CAS  Google Scholar 

  17. S. S. Ivanchev, V. S. Likhomanov, O. N. Primanchenko, S. Ya. Khaikin, V. G. Barabanov, V. V. Kornilov, A. S. Odinokov, Yu. V. Kulvelis, V. T. Lebedev, and V. A. Trunov, Pet. Chem. 52, 453 (2012).

    Article  CAS  Google Scholar 

  18. G. Gebel, Polymer (Guildf) 41, 5829 (2000).

    Article  CAS  Google Scholar 

  19. K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. E. Moukheiber, G. De Moor, L. Flandin, and C. Bas, J. Membr. Sci. 389, 294 (2012).

    Article  CAS  Google Scholar 

  21. H.-G. Haubold, Th. Vad, H. Jungbluth, and P. Hiller, Electrochim. Acta 46, 1559 (2001).

    Article  CAS  Google Scholar 

  22. S. H. Almeida and Y. Kawano, J. Therm. Anal. Calorim. 58, 569 (1999).

    Article  Google Scholar 

  23. H. R. Corti, F. Nores-Pondal, and BueraM. Pilar, J. Power Sources 161, 799 (2006).

    Article  CAS  Google Scholar 

  24. W. Y. Hsu and T. D. Gierke, J. Membr. Sci. 13, 307 (1983).

    Article  CAS  Google Scholar 

  25. T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polym. Sci.: Polym. Phys. Ed. 19, 1687 (1981).

    CAS  Google Scholar 

  26. G. Gebel and R. B. Moore, Macromolecules 33, 4850 (2000).

    Article  CAS  Google Scholar 

  27. V. I. Volkov, N. A. Slesarenko, A. V. Chernyak, V. A. Zabrodin, D. V. Golubenko, V. A. Tverskoy, and A. B. Yaroslavtsev, Membr. Membr. Technol. 4, 189 (2022).

    Article  CAS  Google Scholar 

  28. K. D. Kreuer, M. Ise, A. Fuchs, and J. Maier, J. Phys.-Paris 10, 7 (2000).

    Google Scholar 

  29. A. N. Ozerin, A. V. Rebrov, A. N. Yakunin, L. P. Bogovtseva, S. F. Timashev, and N. F. Bakeev, Vysokomol. Soed., Ser. A 28, 254 (1986).

    CAS  Google Scholar 

  30. A. V. Rebrov, A. N. Ozerin, A. N. Yarunin, N. A. Dreidman, S. V. Timofeev, Yu. M. Popkov, and N. F. Bakeev, Vysokomol. Soed., Ser. A 29, 1453 (1987).

    CAS  Google Scholar 

  31. K. Schmidt-Rohr and Q. Chen, Nat. Mater. 7, 75 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. L. Rubatat, G. Gebel, and O. Diat, Langmuir 14, 1977 (1998).

    Article  Google Scholar 

  33. K. D. Kreuer, M. Schuster, B. Obliers, O. Diat, U. Traub, A. Fuchs, U. Klock, S. J. Paddison, and J. Maier, J. Power Sources 178, 499 (2008).

    Article  CAS  Google Scholar 

  34. S. Yakovlev and K. H. Downing, Phys. Chem. Chem. Phys. 15, 1052 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. A. Cullen, R. Koestner, R. S. Kukreja, Z. Y. Liu, S. Minko, O. Trotsenko, A. Tokarev, L. Guetaz, H. M. Meyer, C. M. Parish, and K. L. More, J. Electrochem. Soc. 161, F1111 (2014).

    Article  CAS  Google Scholar 

  36. F. I. Allen, L. R. Comolli, A. Kusoglu, M. A. Modestino, A. M. Minor, and A. Z. Weber, ACS Macro Lett. 4, 1 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. L. Maldonado, J.-C. Perrin, J. Dillet, and O. Lottin, J. Membr. Sci. 389, 43 (2012).

    Article  CAS  Google Scholar 

  38. T. Shimoaka, C. Wakai, T. Sakabe, S. Yamazaki, T. Hasegawa, Phys. Chem. Chem. Phys. 17, 8843 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. K. Feng, L. Hou, B. Tang, and P. Wu, Phys. Chem. Chem. Phys. 17, 9106 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. P. J. Reucroft, D. Rivin, and N. S. Schneider, Polymer (Guildf) 43, 5157 (2002).

    Article  CAS  Google Scholar 

  41. V. I. Volkov, E. V. Volkov, S. V. Timofeev, E. A. Sanginov, A. A. Pavlov, E. Yu. Safronova, I. A. Stenina, and A. B. Yaroslavtsev, Russ. J. Inorg. Chem. 55, 315 (2010).

    Article  CAS  Google Scholar 

  42. K.-D. Kreuer, Solid State Ionics 252, 93 (2013).

    Article  CAS  Google Scholar 

  43. Q. He, A. Kusoglu, I. T. Lucas, K. Clark, A. Z. Weber, and R. Kostecki, J. Phys. Chem. B 115, 11650 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, J. Phys. Chem. B 114, 3784 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. A. Z. Weber and J. Newman, J. Electrochem. Soc. 150, A1008 (2003).

    Article  CAS  Google Scholar 

  46. V. Freger, J. Phys. Chem. B 113, 24 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. V. I. Roldughin and L. V. Karpenko-Jereb, Colloid J. 79, 532 (2017).

    Article  CAS  Google Scholar 

  48. S. Shi, A. Z. Weber, and A. Kusoglu, Electrochim. Acta 220, 517 (2016).

    Article  CAS  Google Scholar 

  49. N. H. Jalani and R. Datta, J. Membr. Sci. 264, 167 (2005).

    Article  CAS  Google Scholar 

  50. R. B. Moore and C. R. Martin, Macromolecules 22, 3594 (1989).

    Article  CAS  Google Scholar 

  51. I. Nicotera, L. Coppola, C. O. Rossi, M. Youssry, and G. A. Ranieri, J. Phys. Chem. B 113, 13935 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. D. V. Golubenko, E. Y. Safronova, A. B. Ilyin, N. V. Shevlyakova, V. A. Tverskoi, L. Dammak, D. Grande, and A. B. Yaroslavtsev, Mater. Chem. Phys. 197, 192 (2017).

    Article  CAS  Google Scholar 

  53. J. R. O’Dea, N. J. Economou, and S. K. Buratto, Macromolecules 46, 2267 (2013).

    Article  Google Scholar 

  54. C. K. Mittelsteadt and J. Staser, ECS Trans. 41, 101 (2011).

    Article  CAS  Google Scholar 

  55. M. Fumagalli, S. Lyonnard, G. Prajapati, Q. Berrod, L. Porcar, A. Guillermo, and G. Gebel, J. Phys. Chem. B 119, 7068 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. M. Adachi, T. Navessin, Z. Xie, F. H. Li, S. Tanaka, and S. Holdcroft, J. Membr. Sci. 364, 183 (2010).

    Article  CAS  Google Scholar 

  57. Q. Zhao, P. Majsztrik, and J. Benziger, J. Phys. Chem. B 115, 2717 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. X. Ling, M. Bonn, K. F. Domke, and S. H. Parekh, Proc. Nat. Acad. Sci. USA 116, 8715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. S. Mekhilef, R. Saidur, and A. Safari, Renew. Sustain. Energy Rev. 16, 981 (2012).

    Article  CAS  Google Scholar 

  60. Q. Zhao, N. Carro, H. Y. Ryu, and J. Benziger, Polymer (Guildf) 53, 1267 (2012).

    Article  CAS  Google Scholar 

  61. L. Karpenko-Jereb, E. Rynkowska, W. Kujawski, S. Lunghammer, J. Kujawa, S. Marais, K. Fatyeyeva, C. Chappey, and A.-M. Kelterer, Ionics (Kiel) 22, 357 (2016).

    Article  CAS  Google Scholar 

  62. B. Jung, H.-M. Moon, and G. N. B. Barona, J. Power Sources 196, 1880 (2011).

    Article  CAS  Google Scholar 

  63. E. Skou, P. Kauranen, and J. Hentschel, Solid State Ionics 97, 333 (1997).

    Article  CAS  Google Scholar 

  64. L. Chaabane, L. Dammak, D. Grande, C. Larchet, P. Huguet, S. V. Nikonenko, and V. V. Nikonenko, J. Membr. Sci. 377, 54 (2011).

    Article  CAS  Google Scholar 

  65. K.-D. Kreuer, in Hydrogen-Transfer Reactions, Ed. by J. T. Hynes, J. P. Klinman, H. H. Limbach, and R. L. Schowen, vol. 1 (Wiley-VCH, 2007).

    Google Scholar 

  66. S. J. Paddison, Ann. Rev. Mater. Res. 33, 289 (2003).

    Article  CAS  Google Scholar 

  67. S. Shi, T. J. Dursch, C. Blake, R. Mukundan, R. L. Borup, A. Z. Weber, and A. Kusoglu, J. Polym. Sci. B, Polym. Phys. 54, 570 (2016).

    Article  CAS  Google Scholar 

  68. I. A. Stenina and A. B. Yaroslavtsev, Membranes (Basel) 11, 198 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. V. Yu. Kotov and A. B. Yaroslavtsev, Russ. Chem. Bull. 51, 555 (2002).

    Article  Google Scholar 

  70. S. Ochi, O. Kamishima, and J. Mizusaki, Solid State Ionics 180, 580 (2009).

    Article  CAS  Google Scholar 

  71. T. A. Zawodzinski, T. E. Springer, F. Uribe, and S. Gottesfeld, Solid State Ionics 60, 199 (1993).

    Article  CAS  Google Scholar 

  72. T. Mabuchi and T. Tokumasu, J. Phys. Chem. B 122, 5922 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. E. Y. Safronova, V. I. Volkov, and A. B. Yaroslavtsev, Solid State Ionics 188, 129 (2011).

    Article  CAS  Google Scholar 

  74. Y. Ogata, T. Abe, S. Yonemori, N. L. Yamada, D. Kawaguchi, and K. Tanaka, Langmuir 34, 15483 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. S. H. Seo and C. S. Lee, Proc. Ins. Mech. Eng., Part C 224, 2211 (2010).

    Google Scholar 

  76. S. M. Slade and T. R. Ralph, C. Ponce De León, S. A. Campbell, and F. C. Walsh, Fuel Cells 10, 567 (2010).

    Article  CAS  Google Scholar 

  77. Z. Siroma, R. Kakitsubo, N. Fujiwara, T. Ioroi, S. Yamazaki, and K. Yasuda, J. Power Sources 189, 994 (2009).

    Article  CAS  Google Scholar 

  78. M. N. Tsampas, A. Pikos, S. Brosda, A. Katsaounis, and C. G. Vayenas, Electrochim. Acta 51, 2743 (2006).

    Article  CAS  Google Scholar 

  79. A. B. Yaroslavtsev, Inorg. Mater. 48, 1193 (2012).

    Article  CAS  Google Scholar 

  80. R. Jiang, C. K. Mittelsteadt, and C. S. Gittleman, J. Electrochem. Soc. 156, 1440 (2009).

    Article  Google Scholar 

  81. K. R. Cooper, ECS Trans. 41, 1371 (2011).

    Article  CAS  Google Scholar 

  82. E. L. Thompson, T. W. Capehart, T. J. Fuller, and J. Jorne, J. Electrochem. Soc. 153, A2351 (2006).

    Article  CAS  Google Scholar 

  83. A. Siu, J. Schmeisser, and S. Holdcroft, J. Phys. Chem. B 110, 6072 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. N. Zhao, D. Edwards, C. Lei, K. Wang, J. Li, Y. Zhang, S. Holdcroft, and Z. Shi, J. Power Sources 242, 877 (2013).

    Article  CAS  Google Scholar 

  85. N. J. Economou, J. R. O’Dea, T. B. McConnaughy, and S. K. Buratto, RSC Adv. 3, 19525 (2013).

  86. T. J. Peckham, J. Schmeisser, and S. Holdcroft, J. Phys. Chem. B 112, 2848 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. L. Liu, W. Chen, and Y. Li, J. Membr. Sci. 504, 1 (2016).

    Article  CAS  Google Scholar 

  88. N. P. Berezina, S. V. Timofeev, and N. A. Kononenko, J. Membr. Sci. 209, 509 (2002).

    Article  CAS  Google Scholar 

  89. D. DeBonis, M. Mayer, A. Omosebi, and R. S. Besser, Renew. Energy 89, 200 (2016).

    Article  CAS  Google Scholar 

  90. F. Xu, S. Leclerc, O. Lottin, and D. Canet, J. Membr. Sci. 371, 148 (2011).

    Article  CAS  Google Scholar 

  91. E. Yu. Safronova, I. A. Stenina, and A. B. Yaroslavtsev, Pet. Chem. 57, 299 (2017).

    Article  CAS  Google Scholar 

  92. A. Kusoglu, K. T. Cho, R. A. Prato, and A. Z. Weber, Solid State Ionics 252, 68 (2013).

    Article  CAS  Google Scholar 

  93. Z. Tang, R. Keith, D. S. Aaron, J. S. Lawton, A. P. Papandrew, and T. A. Zawodzinski Jr., ECS Trans. 41, 25 (2012).

    Article  CAS  Google Scholar 

  94. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. T. A. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, and S. Gottesfeld, J. Electrochem. Soc. 140, 1041 (1993).

    Article  CAS  Google Scholar 

  96. M. Ise, K. D. Kreuer, and J. Maier, Solid State Ionics 125, 213 (1999).

    Article  CAS  Google Scholar 

  97. F. Xu, S. Leclerc, D. Stemmelen, J.-C. Perrin, A. Retournard, and D. Canet, J. Membr. Sci. 536, 116 (2017).

    Article  CAS  Google Scholar 

  98. I. V. Falina, V. I. Zabolotsky, O. A. Demina, and N. V. Sheldeshov, J. Membr. Sci. 573, 520 (2019).

    Article  CAS  Google Scholar 

  99. I. V. Falina, N. A. Kononenko, S. A. Shkirskaya, O. A. Demina, Yu. M. Volfkovich, V. E. Sosenkin, and M. V. Gritsay, Membr. Membr. Technol. 4, 281 (2022).

    Article  CAS  Google Scholar 

  100. J. R. P. Jayakody, P. E. Stallworth, E. S. Mananga, J. Farrington-Zapata, and S. G. Greenbaum, J. Phys. Chem. B 108, 4260 (2004).

    Article  CAS  Google Scholar 

  101. I. A. Stenina, Ph. Sistat, A. I. Rebrov, G. Pourcelly, and A. B. Yaroslavtsev, Desalination 170, 49 (2004).

    Article  CAS  Google Scholar 

  102. M. P. Godino, V. M. Barragan, J. P. G. Villaluenga, and M. A. Izquierdo-Gil, Sep. Purif. Technol. 148, 10 (2015).

    Article  CAS  Google Scholar 

  103. E. E. Boakye and H. L. Yeager, J. Membr. Sci. 69, 155 (1992).

    Article  CAS  Google Scholar 

  104. C. Larchet, B. Auclair, and V. Nikonenko, Electrochim. Acta 49, 1711 (2004).

    Article  CAS  Google Scholar 

  105. P. Yu. Apel, S. Velizarov, A. V. Volkov, T. V. Eliseeva, V. V. Nikonenko, A. V. Parshina, N. D. Pismenskaya, K. I. Popov, and A. B. Yaroslavtsev, Membr. Membr. Technol. 4, 69 (2022).

    Article  CAS  Google Scholar 

  106. N. A. Belov, A. Y. Alentiev, D. S. Pashkevich, F. A. Voroshilov, E. S. Dvilis, R. Y. Nikiforov, S. V. Chirkov, D. A. Syrtsova, J. V. Kostina, I. I. Ponomarev, I. P. Asanov, and Y. G. Bogdanova, Polymers 14, 5152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. A. O. Volkov, D. V. Golubenko, and A. B. Yaroslavtsev, Sep. Purif. Technol. 254, 117562 (2021).

    Article  CAS  Google Scholar 

  108. H. F. M. Mohamed, K. Ito, Y. Kobayashi, N. Takimoto, Y. Takeoka, and A. Ohira, Polymer (Guildf) 49, 3091 (2008).

    Article  CAS  Google Scholar 

  109. S. Ban, C. Huang, X.-Z. Yuan, and H. Wang, J. Phys. Chem. B 115, 11352 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Yu. P. Yampolskii, Russ. Chem. Rev. 76, 59 (2007).

    Article  CAS  Google Scholar 

  111. L. Zhang, C. Ma, and S. Mukerjee, Electrochim. Acta 48, 1845 (2003).

    Article  CAS  Google Scholar 

  112. A. Ohira and S. Kuroda, Eur. Polym. J. 67, 78 (2015).

    Article  CAS  Google Scholar 

  113. D. Novitski and S. Holdcroft, ACS Appl. Mater. Interfaces 7, 27314 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. J. Catalano, T. Myezwa, M. G. De Angelis, M. G. Baschetti, and G. C. Sarti, Int. J. Hydrogen Energy 37, 6308 (2012).

    Article  CAS  Google Scholar 

  115. M. Schalenbach, M. A. Hoeh, J. T. Gostick, W. Lueke, and D. Stolten, J. Phys. Chem. C 119, 25156 (2015).

    Article  CAS  Google Scholar 

  116. I. Stenina, D. Golubenko, V. Nikonenko, and A. Yaroslavtsev, Int. J. Molecul. Sci. 21, 5517 (2020).

    Article  CAS  Google Scholar 

  117. K. Takeuchi, A.-T. Kuo, T. Hirai, T. Miyajima, S. Urata, S. Terazono, S. Okazaki, and W. Shinoda, J. Phys. Chem. C 123, 20628 (2019).

    Article  CAS  Google Scholar 

  118. Y. Xing, H. Li, and G. Avgouropoulos, Materials 14, 2591 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. T. Wilberforce, O. Ijaodola, E. Ogungbemi, F. N. Khatib, T. Leslie, Z. El-Hassan, J. Thomposon, and A. G. Olabi, Renew. Sustain. Energy Rev. 113, 109286 (2019).

    Article  CAS  Google Scholar 

  120. J. Zhao and X. Li, Energy Convers. Manag. 199, 112022 (2019).

    Article  CAS  Google Scholar 

  121. N. Macauley, K. H. Wong, M. Watson, and E. Kjeang, J. Power Sources 299, 139 (2015).

    Article  CAS  Google Scholar 

  122. X. Ren, T. D. Myles, K. N. Grew, and W. K. S. Chiu, J. Electrochem. Soc. 162, F1221 (2015).

    Article  CAS  Google Scholar 

  123. S. Ma and E. Skou, Solid State Ionics 178, 615 (2007).

    Article  CAS  Google Scholar 

  124. E. M. Erdni-Goryaev, A. Yu. Alentiev, G. N. Bondarenko, A. B. Yaroslavtsev, E. Yu. Safronova, and Yu. P. Yampolskii, Pet. Chem. 55, 693 (2015).

    Article  CAS  Google Scholar 

  125. N. A. Zhilyaeva, E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, G. N. Bondarenko, M. G. Dyakova, N. V. Shevlyakova, V. A. Tverskoi, and A. B. Yaroslavtsev, Pet. Chem. 56, 1034 (2016).

    Article  CAS  Google Scholar 

  126. A. C. C. Campos, R. A. Dos Reis, A. Ortiz, D. Gorri, and I. Ortiz, Ind. Eng. Chem. Res. 57, 10071 (2018).

    Article  CAS  Google Scholar 

  127. Z. Liu, L. Zhang, L. Li, and S. Zhang, Sep. Purif. Technol. 218, 20 (2019).

    Article  CAS  Google Scholar 

  128. M. Saito, S. Tsuzuki, K. Hayamizu, and O. Tatsuhiro, J. Phys. Chem. B 110, 24410 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. M. P. Godino, V. M. Barragan, J. P. G. Villaluenga, M. A. Izquierdo-Gil, C. Ruiz-Bauzá, and B. Seoane, Chem. Eng. J. 162, 643 (2010).

    Article  CAS  Google Scholar 

  130. T. Rottiers, B. Van der Bruggen, and L. Pinoy, Ind. Eng. Chem. Res. 55, 8215 (2016).

    Article  CAS  Google Scholar 

  131. A. Kusoglu, Y. Tang, M. Lugo, A. M. Karlsson, M. H. Santare, S. Cleghorn, W. B. Johnson, J. Power Sources 195, 483 (2010).

    Article  CAS  Google Scholar 

  132. E. Safronova, D. Golubenko, G. Pourcelly, and A. Yaroslavtsev, J. Membr. Sci. 473, 218 (2015).

    Article  CAS  Google Scholar 

  133. Y. Tang, A. M. Karlsson, M. H. Santare, M. Gilbert, S. Cleghorn, and W. B. Johnson, Mater. Sci. Eng. A 425, 297 (2006).

    Article  Google Scholar 

  134. Y. Kawano, Y. Wang, R. A. Palmer, and S. R. Aubuchon, Polímeros 12, 96 (2002).

    Article  CAS  Google Scholar 

  135. V. Arcella, C. Troglia, and Ghielmi Alessandro, Ind. Eng. Chem. Res. 44, 7646 (2005).

    Article  CAS  Google Scholar 

  136. A. M. Dafalla and F. Jiang, Int. J. Hydrogen Energy 43, 2327 (2018).

    Article  CAS  Google Scholar 

  137. M. B. Satterfield and J. B. Benziger, J. Polym. Sci. B, Polym. Phys. 47, 11 (2009).

    Article  CAS  Google Scholar 

  138. Q. Zhao and J. Benziger, J. Polym. Sci. B, Polym. Phys. 51, 915 (2013).

    Article  CAS  Google Scholar 

  139. K. A. Page, K. M. Cable, and R. B. Moore, Macromolecules 38, 6472 (2005).

    Article  CAS  Google Scholar 

  140. F. Teocoli, A. Paolone, O. Palumbo, M. A. Navarra, M. Casciola, and A. Donnadio, J. Polym. Sci. B, Polym. Phys. 50, 1421 (2012).

    Article  CAS  Google Scholar 

  141. F. Bauer, S. Denneler, and M. Willert-Porada, J. Polym. Sci. B, Polym. Phys. 43, 786 (2005).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 21-73-10149, https://rscf.ru/project/21-73-10149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Safronova.

Ethics declarations

The authors declare that they have no conflicts of interest

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, E.Y., Lysova, A.A. Perfluorosulfonic Acid Polymer Membranes: Microstructure and Basic Functional Properties. Membr. Membr. Technol. 5, 379–393 (2023). https://doi.org/10.1134/S2517751623060070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623060070

Keywords:

Navigation