Skip to main content
Log in

Trifluoroethyl Acrylate-Substituted Polymethylsiloxane—a Promising Membrane Material for Separating an ABE Fermentation Mixture

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

This work is aimed at obtaining a membrane material that is resistant to the formation of a precipitate on the surface upon contact with an ABE fermentation mixture and possesses a good separating ability during the pervaporation isolation of n-butanol from a water–alcohol mixture. In this regard, this work for the first time proposes creating pervaporation membranes based on polymethyltrifluoroethylacrylatesiloxane (F3-Acr) as well as a copolymer of polydecylmethylsiloxane and polymethyltrifluoroethylacrylatesiloxane (C10–F3-Acr). The structure and sorption properties of the developed membrane materials for n-butanol, ethanol, and acetone are studied in comparison with polydecylmethylsiloxane (C10). It should be noted that the highest sorption of n-butanol is characteristic for C10–F3-Acr (0.46 g/g). The change in the surface properties is assessed by the value of the contact angle and elemental composition of the surface before and after exposure for 1 month in a fermentation medium. The transport and separation properties of the synthesized membrane materials are studied in the vacuum pervaporation mode during the separation of a model ABE fermentation mixture. It is shown that introducing a fluorine-containing substituent into the side chain of polysiloxane makes it possible to increase the hydrophilicity of the polymer: the water flow for F3-Acr is 0.7 × 10−6 kg m m−2 h−1, which is almost threefold higher when compared to C10. A positive effect of the combination of C10 and F3-Acr groups in polysiloxane is worth noting. Thus, with an increase in the total flow by 60% when compared to a C10 membrane, the values of the separation factor for n-butanol, acetone, and ethanol are 40.5, 32.7, and 4.3 and increase by 6, 15, and 12%, respectively, when compared to a C10 membrane. For a C10–F3-Acr membrane, the pervaporation separation indices for n-butanol, acetone, and ethanol are 136, 109, and 11, respectively. Therefore, this membrane is twice as efficient as C10. Taking into account the absence of detectable contamination of the surface of the membrane material with fermentation products, one can note a high potential of a C10–F3-Acr membrane for the task of isolating alcohols from an ABE fermentation mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. Zheng, C. Li, N. Wang, J. Li, and Q. An, Chinese J. Chem. Eng. 27, 1296 (2019).

    Article  CAS  Google Scholar 

  2. Y. K. Oh, K. R. Hwang, C. Kim, J. R. Kim, and J. S. Lee, Biores. Technol. 257, 320 (2018).

    Article  CAS  Google Scholar 

  3. P. Dürre, J. Health Care Nutr. Technol. 2, 1525 (2007).

    Google Scholar 

  4. V. García, J. Päkkilä, H. Ojamo, E. Muurinen, and R. L. Keiski, Renew. Sust. Energ. Rev. 15, 964 (2011).

    Article  Google Scholar 

  5. E. M. Green, Curr. Opin. Biotechnol. 22, 337 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. P. P. Peralta-Yahya and J. D. Keasling, Biotechnology J. 5, 147 (2010).

    Article  CAS  Google Scholar 

  7. G. Liu, W. Wei, H. Wu, X. Dong, M. Jiang, and W. Jin, J. Membr. Sci. 373, 121 (2011).

    Article  CAS  Google Scholar 

  8. A. Kujawska, J. Kujawski, M. Bryjak, and W. Kujawski, Renew. Sustain. Energy Rev. 48, 648 (2015).

    Article  CAS  Google Scholar 

  9. A. Pulyalina, G. Polotskaya, M. Goikhman, I. Podeshvo, B. Chernitsa, V. Kocherbitov, and A. Toikka, Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  10. B. Van der Bruggen and P. Luis, Curr. Opin. Chem. Eng. 4, 47 (2014).

    Article  Google Scholar 

  11. A. A. Atlaskin, A. N. Petukhov, N. R. Yanbikov, M. E. Salnikova, M. S. Sergeeva, V. M. Vorotyntsev, and I. V. Vorotyntsev, Chem. Proc. Eng. 323 (2018).

  12. K. V. Otvagina, A. V. Penkova, M. E. Dmitrenko, A. I. Kuzminova, T. S. Sazanova, A. V. Vorotyntsev, and I. V. Vorotyntsev, Membranes 9, 38 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. G. Liu, W. Wei, and W. Jin, ACS Sustain. Chem. Eng. 2, 546 (2014).

    Article  CAS  Google Scholar 

  14. A. Rozicka, J. Niemisto, R. L. Keiski, and W. Kujawski, J. Membr. Sci. 453, 108 (2014).

    Article  CAS  Google Scholar 

  15. A. Rom and A. Friedl, Sep. Purif. Technol. 170, 40 (2016).

    Article  CAS  Google Scholar 

  16. A. Kujawska, K. Knozowska, J. Kujawa, G. Li, and W. Kujawski, Sep. Purif. Technol. 234, 116092 (2020).

    Article  Google Scholar 

  17. I. L. Borisov, N. V. Ushakov, V. V. Volkov, and E. Sh. Finkel’shtein, Pet. Chem. 56, 798 (2016).

    Article  CAS  Google Scholar 

  18. M. Bennett, B. J. Brisdon, R. England, and R. W. Field, J. Membr. Sci. 137, 63 (1997).

    Article  CAS  Google Scholar 

  19. E. A. Grushevenko, I. A. Podtynnikov, and I. L. Borisov, Russ. J. Appl. Chem. 92, 1593 (2019).

    Article  CAS  Google Scholar 

  20. I. Borisov, I. Podtynnikov, E. Grushevenko, O. Scharova, T. Anokhina, S. Makaev, A. Volkov, and V. Volkov, Polymers 12, 1213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. V. Penkova, S. F. Acquah, M. P. Sokolova, M. E. Dmitrenko, and A. M. Toikka, J. Membr. Sci. 491, 22 (2015).

    Article  CAS  Google Scholar 

  22. G. A. Polotskaya, A. Y. Pulyalina, V. A. Rostovtseva, A. M. Toikka, N. N. Saprykina, and L. V. Vinogradova, Polym. Int. 65, 407 (2016).

    Article  CAS  Google Scholar 

  23. Z. Jia and G. Wu, Microporous Mesoporous Mater. 235, 151 (2016).

    Article  CAS  Google Scholar 

  24. G. Liu, V. Chernikova, Y. Liu, K. Zhang, Y. Belmabkhout, O. Shekhah, C. Zhang, S. Yi, M. Eddaoudi, and W. J. Koros, Nat. Mater. 17, 283 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. P. Yu. Apel, S. Velizarov, A. V. Volkov, T. V. Eliseeva, V. V. Nikonenko, A. V. Parshina, N. D. Pismenskaya, K. I. Popov, and A. B. Yaroslavtsev, Membr. Membr. Tekhnol. 4, 69 (2022).

    Article  CAS  Google Scholar 

  26. V. Volkov, I. Borisov, G. Golubev, V. Vasilevsky, D. Matveev, G. Bondarenko, and A. Volkov, J. Chem. Technol. Biotechnol. 9, 40 (2020).

    Article  Google Scholar 

  27. A. G. Fadeev, M. M. Meagher, S. S. Kelley, and V. V. Volkov, J. Membr. Sci. 173, 133 (2000).

    Article  CAS  Google Scholar 

  28. N. Qureshi and H. P. Blaschek, Biotechnol. Progr. 15, 594 (1999).

    Article  CAS  Google Scholar 

  29. T. N. Rokhmanka, E. A. Grushevenko, O. V. Arapova, G. N. Bondarenko, G. S. Golubev, I. L. Borisov, and A. V. Volkov, Appl. Sci. 13, 3827 (2023).

    Article  CAS  Google Scholar 

  30. K. Knozowska, A. Kujawska, J. Kujawa, W. Kujawski, M. Bryjak, E. Chrzanowska, and J. K. Kujawski, Sep. Purif. Technol. 188, 512 (2017).

    Article  CAS  Google Scholar 

  31. A. V. Yakovlev, M. G. Shalygin, S. M. Matson, V. S. Khotimskiy, and V. V. Teplyakov, J. Membr. Sci. 434, 99 (2013).

    Article  CAS  Google Scholar 

  32. M. G. Shalygin, A. A. Kozlova, and V. V. Teplyakov, Membr. Membr. Technol. 4, 258 (2022).

    Article  CAS  Google Scholar 

  33. Z. Chu and S. Seeger, Chem. Soc. Rev. 43, 2784 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, Science 308, 1618 (2007).

    Article  Google Scholar 

  35. X. Lu, Y. Peng, L. Ge, R. Lin, Z. Zhu, and S. Liu, J. Membr. Sci. 505, 61 (2016).

    Article  CAS  Google Scholar 

  36. R. Zheng, Y. Chen, J. Wang, J. Song, X.-M. Li, and T. He, J. Membr. Sci. 555, 197 (2018).

    Article  CAS  Google Scholar 

  37. H. Zhu, X. Li, Y. Pan, G. Liu, H. Wu, M. Jiang, and W. Jin, J. Membr. Sci. 609, 118225 (2020).

    Article  CAS  Google Scholar 

  38. I. L. Borisov, E. A. Grushevenko, T. S. Anokhina, D. S. Bakhtin, I. S. Levin, G. N. Bondarenko, V. V. Volkov, and A. V. Volkov, Mater. Today Chem. 22, 100598 (2021).

    Article  CAS  Google Scholar 

  39. S. Darvishmanesh, J. Degreve, and B. Van der Bruggen, Chem. Eng. Sci. 64, 3914 (2009).

    Article  CAS  Google Scholar 

  40. A. A. Yushkin, T. S. Anokhina, S. D. Bazhenov, I. L. Borisov, P. M. Budd, and A. V. Volkov, Pet. Chem. 58, 1154 (2018).

    Article  CAS  Google Scholar 

  41. N. Kang, Z. Du, H. Li, and C. Zhang, J. Appl. Polym. Sci. 124, 4915 (2011).

    Article  Google Scholar 

  42. S. A. Stern, V. M. Shah, and B. J. Hardy, J. Polym. Sci. B 25, 1263 (1987).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Shared Research Center Analytical Center of Deep Oil Processing and Petrochemistry, Russian Academy of Sciences. The authors are grateful to M.P. Filatova for executing NMR spectroscopy and to G.A. Shandryuk for executing DSC.

Funding

This study was financially supported by a grant from the Russian Science Foundation (no. 22-79-10332, https://rscf.ru/project/22-79-10332/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Grushevenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grushevenko, E.A., Rokhmanka, T.N., Balynin, A.V. et al. Trifluoroethyl Acrylate-Substituted Polymethylsiloxane—a Promising Membrane Material for Separating an ABE Fermentation Mixture. Membr. Membr. Technol. 5, 394–404 (2023). https://doi.org/10.1134/S2517751623060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623060057

Keywords:

Navigation