Skip to main content

Advertisement

Log in

Deoxygenation of CO2 Absorbent Based on Monoethanolamine in Gas–Liquid Membrane Contactors Using Composite Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

This work is devoted to the removal of dissolved oxygen from a model absorbent based on monoethanolamine (MEA) to prevent its oxidative degradation during the absorption purification of flue gases from carbon dioxide. Composite membranes based on porous ceramic and polymeric supports with a thin selective layer of poly[1-(trimethylsilyl)-1-propyne] or its blend with polyvinyltrimethylsilane are developed, and gas-liquid membrane contactors are created on their basis. It is shown that the use of these contractors in the vacuum mode allows the removal of up to 60% of dissolved oxygen from the model sorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. T. M. Gur, Progr. Energy Combust. Sci. 89, 100965 (2022).

    Article  Google Scholar 

  2. J. Hansen, D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell, Science 213, 957 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. J. F. D. Tapia, J.-Y. Lee, R. E. Ooi, D. C. Foo, and R. R. Tan, Sustain. Prod. Cons. 13, 1 (2018).

    Google Scholar 

  4. S. Bazhenov, V. Chuboksarov, A. Maximov, and O. Zhdaneev, Sustain. Mater. Technol. 33, e00452 (2022).

    Google Scholar 

  5. E. G. Novitskii, S. D. Bazhenov, and A. V. Volkov, Pet. Chem. 61, 407 (2021).

    Article  CAS  Google Scholar 

  6. I. A. Golubeva, A. V. Dashkina, and I. V. Shulga, Pet. Chem. 60, 45 (2020).

    Article  CAS  Google Scholar 

  7. V. Buvik, K. K. Høisæter, S. J. Vevelstad, and H. K. Knuutila, Int. J. Greenhouse Gas Control 106, 103246 (2021).

    Article  CAS  Google Scholar 

  8. A. L. Kohl and R. B. Nielsen, Gas Purification, 5th Ed. (Gulf Publishing Company, Houston, 1997).

    Google Scholar 

  9. S. D. Bazhenov, E. G. Novitskii, V. P. Vasilevskii, E. A. Grushevenko, A. A. Bienko, and A. V. Volkov, Russ. J. Appl. Chem. 92, 1045 (2019).

    Article  CAS  Google Scholar 

  10. P. Moser, G. Wiechers, S. Schmidt, and J. G. M. Monteiro, Int. J. Greenhouse Gas Control 95, 102945 (2020).

    Article  CAS  Google Scholar 

  11. Y.-S. Choi, D. Duan, S. Nesic, F. Vitse, S. A. Bedell, and C. Worley, Corrosion 66, 125004 (2010).

    Article  Google Scholar 

  12. I. R. Soosaiprakasam and A. Veawab, Int. J. Greenhouse Gas Control 2, 553 (2008).

    Article  CAS  Google Scholar 

  13. L. T. Popoola, A. S. Grema, G. K. Latinwo, B. Gutti, and A. S. Balogun, Int. J. Ind. Chem. 4, 1 (2013).

    Article  Google Scholar 

  14. C. Gouedard, D. Picq, F. Launay, and P.-L. Carrette, Int. J. Greenhouse Gas Control 10, 244 (2012).

    Article  CAS  Google Scholar 

  15. T. Supap, C. Saiwan, R. Idem, and P. P. Tontiwachwuthikul, Carbon Manage. 2, 551 (2011).

    Article  CAS  Google Scholar 

  16. I. M. Saeed, P. Alaba, S. A. Mazari, W. J. Basirun, V. S. Lee, and N. Sabzoi, Int. J. Greenhouse Gas Control 79, 212 (2018).

    Article  CAS  Google Scholar 

  17. A. K. Morken, S. Pedersen, S. O. Nesse, N. E. Flo, K. Johnsen, J. K. Feste, T. de Cazenove, L. Faramarzi, and K. Vernstad, Int. J. Greenhouse Gas Control 82, 175 (2019).

    Article  CAS  Google Scholar 

  18. N. Kladkaew, R. Idem, P. Tontiwachwuthikul, and C. Saiwan, Energy Proc. 4, 1761 (2011).

    Article  CAS  Google Scholar 

  19. B. Udayappan and A. Veawab, Int. J. Greenhouse Gas Control 114, 103565 (2022).

    Article  CAS  Google Scholar 

  20. L. Dumee, C. Scholes, G. Stevens, and S. Kentish, Int. J. Greenhouse Gas Control 10, 443 (2012).

    Article  CAS  Google Scholar 

  21. T. Wang, J. Hovland, and K. J. Jens, J. Environ. Sci. 27, 276 (2015).

    Article  CAS  Google Scholar 

  22. R. V. Figueiredo, T. Srivastava, T. Skaar, N. Warning, P. Gravesteijn, P. van Os, L. Ansaloni, L. Deng, H. Knuutila, and J. Monteiro, Int. J. Greenhouse Gas Control 112, 103493 (2021).

    Article  Google Scholar 

  23. S. D. Bazhenov, Pet. Chem. 62, 643 (2022).

    Article  CAS  Google Scholar 

  24. A. Gabelman and S.-T. Hwang, J. Membr. Sci. 159, 61 (1999).

    Article  CAS  Google Scholar 

  25. K. Simons, K. Nijmeijer, and M. Wessling, J. Membr. Sci. 340, 214 (2009).

    Article  CAS  Google Scholar 

  26. S. Kim, C. A. Scholes, D. E. Heath, and S. E. Kentish, Chem. Eng. J. 411, 128468 (2021).

    Article  CAS  Google Scholar 

  27. A. Yu. Alent’ev, A. V. Volkov, I. V. Vorotyntsev, A. L. Maksimov, and A. B. Yaroslavtsev, Membr. Membr. Technol. 3, 255 (2021).

    Article  Google Scholar 

  28. A. A. Poyarkov, D. I. Petukhov, and A. A. Eliseev, Desalination 550, 116366 (2023).

    Article  CAS  Google Scholar 

  29. D. I. Petukhov, M. A. Komkova, Ar. A. Eliseev, A. A. Poyarkov, and A. Eliseev, Chem. Eng. Res. Des. 177, 448 (2022).

    Article  CAS  Google Scholar 

  30. X. Tan, G. Capar, and K. Li, J. Membr. Sci. 251, 111 (2005).

    Article  CAS  Google Scholar 

  31. M. Kishi, K. Nagatsuka, and T. Toda, Front. Bioeng. Biotechnol. 8, 978 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. T. Li, P. Yu, and Y. Luo, J. Appl. Polym. Sci. 132, 41350 (2015).

    Google Scholar 

  33. J. Lee, S.-M. Baek, C. Boo, A. Son, H. Jung, S. S. Park, and S. W. Hong, J. Clean. Prod. 277, 124049 (2020).

    Article  CAS  Google Scholar 

  34. J. Monteiro, R. V. Figueiredo, D. Bakker, I. Stellwag, A. Huizinga, M. A. Zahra, P. van Os, and E. Goetheer, Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne, 2018, p. 21.

  35. O. Kattan, K. Ebbers, A. Koolaard, H. Vos, G. Bargeman, Sep. Purif. Technol. 205, 231 (2018).

    Article  CAS  Google Scholar 

  36. R. Wang, D. F. Li, C. Zhou, M. Liu, and D. T. Liang, J. Membr. Sci. 229, 147 (2004).

    Article  CAS  Google Scholar 

  37. J. A. Franco, S. E. Kentish, J. M. Perera, and G. W. Stevens, Ind. Eng. Chem. Res. 50, 4011 (2011).

    Article  CAS  Google Scholar 

  38. A. Bottino, A. Comite, C. Costa, R. Di Felice, and E. Varosio, Sep. Sci. Technol. 50, 1860 (2015).

    Article  CAS  Google Scholar 

  39. Y. Xu, C. Malde, and R. Wang, J. Membr. Sci. Res. 6, 30 (2020).

    Google Scholar 

  40. M. H. Ibrahim, M. H. El-Naas, Z. Zhang, and B. Van der Bruggen, Energy Fuels 32, 963 (2018).

    Article  CAS  Google Scholar 

  41. E. Chabanon, D. Roizard, and E. Favre, Ind. Eng. Chem. Res. 50, 8237 (2011).

    Article  CAS  Google Scholar 

  42. A. A. Lysenko, S. D. Bazhenov, V. P. Vasilevskii, E. G. Novitskii, and A. V. Volkov, Membr. Membr. Tekhnol. 2, 243 (2021).

    Google Scholar 

  43. S. D. Bazhenov, G. A. Dibrov, E. G. Novitsky, V. P. Vasilevsky, and V. V. Volkov, Pet. Chem. 54, 617 (2014).

    Article  CAS  Google Scholar 

  44. A. O. Malakhov and S. D. Bazhenov, Pet. Chem. 58, 330 (2018).

    Article  CAS  Google Scholar 

  45. G. A. Dibrov, V. V. Volkov, V. P. Vasilevsky, A. A. Shutova, S. D. Bazhenov, V. S. Khotimsky, A. Van de Runstraat, E. L. V. Goetheer, and A. V. Volkov, J. Membr. Sci. 470, 439 (2014).

    Article  CAS  Google Scholar 

  46. D. Kalmykov, A. Balynin, A. Yushkin, E. Grushevenko, S. Sokolov, A. Malakhov, A. Volkov, and S. Bazhenov, Membranes 12, 1160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D. N. Matveev, K. A. Kutuzov, and V. P. Vasilevsky, Membr. Membr. Technol. 2, 351 (2020).

    Article  CAS  Google Scholar 

  48. D. Matveev, I. Borisov, V. Vasilevsky, G. Karpacheva, and V. Volkov, Membranes 12, 1257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. V. Buvik, I. M. Bernhardsen, R. V. Figueiredo, S. J. Vevelstad, E. Goetheer, P. van Os, and H. K. Knuutila, Int. J. Greenhouse Gas Control 104, 103205 (2021).

    Article  CAS  Google Scholar 

  50. A. Trusov, S. Legkov, BroekeL. J. P. Van Den, E. Goetheer, V. Khotimsky, and A. Volkov, J. Membr. Sci. 383, 241 (2011).

    Article  CAS  Google Scholar 

  51. A. N. Trusov, Cand. Sci. (Chem.) Dissertation, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 2010.

Download references

ACKNOWLEDGMENTS

We are grateful to P.A. Safronov for his help in manufacturing membrane contractors and D.S. Bakhtin for recording SEM images.

This work was carried out using the equipment of the Shared Research Center Analytical Center of Deep Oil Processing and Petrochemistry, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

This work was performed at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences and supported by the Russian Science Foundation within the framework of project no. 21-79-10400. D.K., S.Sh., T.A., and S.B. are grateful to the Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Kalmykov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmykov, D.O., Shirokikh, S.A., Matveev, D.N. et al. Deoxygenation of CO2 Absorbent Based on Monoethanolamine in Gas–Liquid Membrane Contactors Using Composite Membranes. Membr. Membr. Technol. 5, 333–343 (2023). https://doi.org/10.1134/S2517751623050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623050049

Keywords:

Navigation