Abstract
This work is devoted to the removal of dissolved oxygen from a model absorbent based on monoethanolamine (MEA) to prevent its oxidative degradation during the absorption purification of flue gases from carbon dioxide. Composite membranes based on porous ceramic and polymeric supports with a thin selective layer of poly[1-(trimethylsilyl)-1-propyne] or its blend with polyvinyltrimethylsilane are developed, and gas-liquid membrane contactors are created on their basis. It is shown that the use of these contractors in the vacuum mode allows the removal of up to 60% of dissolved oxygen from the model sorbent.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
T. M. Gur, Progr. Energy Combust. Sci. 89, 100965 (2022).
J. Hansen, D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell, Science 213, 957 (1981).
J. F. D. Tapia, J.-Y. Lee, R. E. Ooi, D. C. Foo, and R. R. Tan, Sustain. Prod. Cons. 13, 1 (2018).
S. Bazhenov, V. Chuboksarov, A. Maximov, and O. Zhdaneev, Sustain. Mater. Technol. 33, e00452 (2022).
E. G. Novitskii, S. D. Bazhenov, and A. V. Volkov, Pet. Chem. 61, 407 (2021).
I. A. Golubeva, A. V. Dashkina, and I. V. Shulga, Pet. Chem. 60, 45 (2020).
V. Buvik, K. K. Høisæter, S. J. Vevelstad, and H. K. Knuutila, Int. J. Greenhouse Gas Control 106, 103246 (2021).
A. L. Kohl and R. B. Nielsen, Gas Purification, 5th Ed. (Gulf Publishing Company, Houston, 1997).
S. D. Bazhenov, E. G. Novitskii, V. P. Vasilevskii, E. A. Grushevenko, A. A. Bienko, and A. V. Volkov, Russ. J. Appl. Chem. 92, 1045 (2019).
P. Moser, G. Wiechers, S. Schmidt, and J. G. M. Monteiro, Int. J. Greenhouse Gas Control 95, 102945 (2020).
Y.-S. Choi, D. Duan, S. Nesic, F. Vitse, S. A. Bedell, and C. Worley, Corrosion 66, 125004 (2010).
I. R. Soosaiprakasam and A. Veawab, Int. J. Greenhouse Gas Control 2, 553 (2008).
L. T. Popoola, A. S. Grema, G. K. Latinwo, B. Gutti, and A. S. Balogun, Int. J. Ind. Chem. 4, 1 (2013).
C. Gouedard, D. Picq, F. Launay, and P.-L. Carrette, Int. J. Greenhouse Gas Control 10, 244 (2012).
T. Supap, C. Saiwan, R. Idem, and P. P. Tontiwachwuthikul, Carbon Manage. 2, 551 (2011).
I. M. Saeed, P. Alaba, S. A. Mazari, W. J. Basirun, V. S. Lee, and N. Sabzoi, Int. J. Greenhouse Gas Control 79, 212 (2018).
A. K. Morken, S. Pedersen, S. O. Nesse, N. E. Flo, K. Johnsen, J. K. Feste, T. de Cazenove, L. Faramarzi, and K. Vernstad, Int. J. Greenhouse Gas Control 82, 175 (2019).
N. Kladkaew, R. Idem, P. Tontiwachwuthikul, and C. Saiwan, Energy Proc. 4, 1761 (2011).
B. Udayappan and A. Veawab, Int. J. Greenhouse Gas Control 114, 103565 (2022).
L. Dumee, C. Scholes, G. Stevens, and S. Kentish, Int. J. Greenhouse Gas Control 10, 443 (2012).
T. Wang, J. Hovland, and K. J. Jens, J. Environ. Sci. 27, 276 (2015).
R. V. Figueiredo, T. Srivastava, T. Skaar, N. Warning, P. Gravesteijn, P. van Os, L. Ansaloni, L. Deng, H. Knuutila, and J. Monteiro, Int. J. Greenhouse Gas Control 112, 103493 (2021).
S. D. Bazhenov, Pet. Chem. 62, 643 (2022).
A. Gabelman and S.-T. Hwang, J. Membr. Sci. 159, 61 (1999).
K. Simons, K. Nijmeijer, and M. Wessling, J. Membr. Sci. 340, 214 (2009).
S. Kim, C. A. Scholes, D. E. Heath, and S. E. Kentish, Chem. Eng. J. 411, 128468 (2021).
A. Yu. Alent’ev, A. V. Volkov, I. V. Vorotyntsev, A. L. Maksimov, and A. B. Yaroslavtsev, Membr. Membr. Technol. 3, 255 (2021).
A. A. Poyarkov, D. I. Petukhov, and A. A. Eliseev, Desalination 550, 116366 (2023).
D. I. Petukhov, M. A. Komkova, Ar. A. Eliseev, A. A. Poyarkov, and A. Eliseev, Chem. Eng. Res. Des. 177, 448 (2022).
X. Tan, G. Capar, and K. Li, J. Membr. Sci. 251, 111 (2005).
M. Kishi, K. Nagatsuka, and T. Toda, Front. Bioeng. Biotechnol. 8, 978 (2020).
T. Li, P. Yu, and Y. Luo, J. Appl. Polym. Sci. 132, 41350 (2015).
J. Lee, S.-M. Baek, C. Boo, A. Son, H. Jung, S. S. Park, and S. W. Hong, J. Clean. Prod. 277, 124049 (2020).
J. Monteiro, R. V. Figueiredo, D. Bakker, I. Stellwag, A. Huizinga, M. A. Zahra, P. van Os, and E. Goetheer, Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne, 2018, p. 21.
O. Kattan, K. Ebbers, A. Koolaard, H. Vos, G. Bargeman, Sep. Purif. Technol. 205, 231 (2018).
R. Wang, D. F. Li, C. Zhou, M. Liu, and D. T. Liang, J. Membr. Sci. 229, 147 (2004).
J. A. Franco, S. E. Kentish, J. M. Perera, and G. W. Stevens, Ind. Eng. Chem. Res. 50, 4011 (2011).
A. Bottino, A. Comite, C. Costa, R. Di Felice, and E. Varosio, Sep. Sci. Technol. 50, 1860 (2015).
Y. Xu, C. Malde, and R. Wang, J. Membr. Sci. Res. 6, 30 (2020).
M. H. Ibrahim, M. H. El-Naas, Z. Zhang, and B. Van der Bruggen, Energy Fuels 32, 963 (2018).
E. Chabanon, D. Roizard, and E. Favre, Ind. Eng. Chem. Res. 50, 8237 (2011).
A. A. Lysenko, S. D. Bazhenov, V. P. Vasilevskii, E. G. Novitskii, and A. V. Volkov, Membr. Membr. Tekhnol. 2, 243 (2021).
S. D. Bazhenov, G. A. Dibrov, E. G. Novitsky, V. P. Vasilevsky, and V. V. Volkov, Pet. Chem. 54, 617 (2014).
A. O. Malakhov and S. D. Bazhenov, Pet. Chem. 58, 330 (2018).
G. A. Dibrov, V. V. Volkov, V. P. Vasilevsky, A. A. Shutova, S. D. Bazhenov, V. S. Khotimsky, A. Van de Runstraat, E. L. V. Goetheer, and A. V. Volkov, J. Membr. Sci. 470, 439 (2014).
D. Kalmykov, A. Balynin, A. Yushkin, E. Grushevenko, S. Sokolov, A. Malakhov, A. Volkov, and S. Bazhenov, Membranes 12, 1160 (2022).
D. N. Matveev, K. A. Kutuzov, and V. P. Vasilevsky, Membr. Membr. Technol. 2, 351 (2020).
D. Matveev, I. Borisov, V. Vasilevsky, G. Karpacheva, and V. Volkov, Membranes 12, 1257 (2022).
V. Buvik, I. M. Bernhardsen, R. V. Figueiredo, S. J. Vevelstad, E. Goetheer, P. van Os, and H. K. Knuutila, Int. J. Greenhouse Gas Control 104, 103205 (2021).
A. Trusov, S. Legkov, BroekeL. J. P. Van Den, E. Goetheer, V. Khotimsky, and A. Volkov, J. Membr. Sci. 383, 241 (2011).
A. N. Trusov, Cand. Sci. (Chem.) Dissertation, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 2010.
ACKNOWLEDGMENTS
We are grateful to P.A. Safronov for his help in manufacturing membrane contractors and D.S. Bakhtin for recording SEM images.
This work was carried out using the equipment of the Shared Research Center Analytical Center of Deep Oil Processing and Petrochemistry, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.
Funding
This work was performed at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences and supported by the Russian Science Foundation within the framework of project no. 21-79-10400. D.K., S.Sh., T.A., and S.B. are grateful to the Foundation for financial support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by T. Soboleva
Rights and permissions
About this article
Cite this article
Kalmykov, D.O., Shirokikh, S.A., Matveev, D.N. et al. Deoxygenation of CO2 Absorbent Based on Monoethanolamine in Gas–Liquid Membrane Contactors Using Composite Membranes. Membr. Membr. Technol. 5, 333–343 (2023). https://doi.org/10.1134/S2517751623050049
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2517751623050049