Skip to main content
Log in

Transport Properties and Structure of Anisotropic Composites Based on Cation-Exchange Membranes and Polyaniline

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Comprehensive characterization of basic MK-40 and Ralex CMH heterogeneous cation-exchange membranes and composite membranes with polyaniline based on them is performed including the determination of specific electrical conductivity and diffusion permeability; measurement of current–voltage curves in solutions of sodium, calcium, and magnesium chlorides and hydrochloric acid and curves of distribution of water with respect to the bond energies and effective pore radii as well as assessment of the transport structural parameters of a microheterogeneous model. The time of synthesis of polyaniline on the surface of cation-exchange membranes for obtaining samples with an anisotropic structure and asymmetric electric transport properties is determined by successive diffusion of a solution of an oxidizing agent and a monomer through the membrane into water. It is shown based on the analysis of the electric transport properties, structural characteristics, and model transport structural parameters of the membranes in solutions of singly and doubly charged ions that the obtained materials are promising for use in the processes of electrodialysis desalination of multicomponent solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. I. Merino-Garcia and S. Velizarov, Sep. Purif. Technol. 277, 119445 (2021).

    Article  CAS  Google Scholar 

  2. S. Al-Amshawee, M. Y. B. M. Yunus, A. A. M. Azoddein, D. G. Hassell, I. H. Dakhil, and H. A. Hasan, Chem. Eng. J. 380, 122231 (2020).

    Article  CAS  Google Scholar 

  3. L. Gurreri, A. Tamburini, A. Cipollina, and G. Micale, Membranes 10, 146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Jiang, H. Sun, H. Wang, B. P. Ladewig, and Z. Yao, Chemosphere 282, 130817 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. I. Stenina, D. Golubenko, V. Nikonenko, and A. Yaroslavtsev, Int. J. Mol. Sci. 21, 5517 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. T. Luo, S. Abdu, and M. Wessling, J. Membr. Sci. 555, 429 (2018).

    Article  CAS  Google Scholar 

  7. A. K. Thakur and M. Malmali, J. Environ. Chem. Eng. 10 (2022).

  8. D. Yu. Butylskii, V. A. Troitskiy, M. V. Sharafan, N. D. Pismenskaya, and V. V. Nikonenko, Desalination 537, 115821 (2022).

    Article  CAS  Google Scholar 

  9. I. Falina, N. Loza, S. Loza, E. Titskaya, and N. Romanyuk, Membranes 11, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T. Sata, T. Sata, and W. Yang, J. Membr. Sci. 206, 31 (2002).

    Article  CAS  Google Scholar 

  11. M. Kumar, M. A. Khan, Z. A. AlOthman, and M. R. Siddiqui, Desalination 325, 95 (2013).

    Article  CAS  Google Scholar 

  12. K. V. Protasov, S. A. Shkirskaya, N. P. Berezina, and V. I. Zabolotskii, Rus. J. Electrochem. 46, 1131 (2010).

    Article  CAS  Google Scholar 

  13. T. S. Titova, P. A. Yurova, I. A. Stenina, A. B. Yaroslavtsev, V. A. Kuleshova, A. V. Parshina, and O. V. Bobreshova, Membr. Membr. Technol. 3, 411 (2021).

    Article  CAS  Google Scholar 

  14. S. Ben Jadi, A. El Guerraf, A. Kiss, A. El Azrak, E. A. Bazzaoui, R. Wang, J. I. Martins, and M. Bazzaoui, J. Solid State Electrochem. 24, 1551 (2020).

    Article  CAS  Google Scholar 

  15. N. A. Kononenko, N. V. Loza, S. A. Shkirskaya, I. V. Falina, and D. Y. Khanukaeva, J. Solid State Electrochem. 19, 2623 (2015).

    Article  CAS  Google Scholar 

  16. M. A. Andreeva, N. V. Loza, N. D. Pis’menskaya, L. Dammak, and C. Larchet, Membranes 10, 145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu. M. Volfkovich, A. N. Filippov, and V. S. Bagotsky, Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology (Springer, London, 2014).

    Book  Google Scholar 

  18. N. P. Berezina and A. A. R. Kubaisi, Rus. J. Electrochem. 42, 81 (2006).

    Article  CAS  Google Scholar 

  19. L. V. Karpenko, O. A. Demina, G. A. Dvorkina, S. B. Parshikov, N. P. Berezina, C. Larchet, and B. Auclair, Rus. J. Electrochem. 37, 287 (2001).

    Article  CAS  Google Scholar 

  20. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. E. M. Akberova, V. I. Vasil’eva, V. I. Zabolotsky, and L. Novak, J. Membr. Sci. 566, 317 (2018).

    Article  CAS  Google Scholar 

  22. O. A. Demina, N. A. Kononenko, I. V. Falina, and A. V. Demin, Colloid J. 79, 317 (2017).

    Article  CAS  Google Scholar 

  23. N. P. Berezina, N. A. Kononenko, S. A. Shkirskaya, I. V. Falina, A. N. Filippov, and A. A.-R. Sycheva, Rus. J. Electrochem. 46, 485 (2010).

    Article  CAS  Google Scholar 

  24. N. P. Berezina, S. A. Shkirskaya, M. V. Kolechko, O. V. Popova, I. N. Senchikhin, and V. I. Roldugin, Rus. J. Electrochem. 47, 995 (2011).

    Article  CAS  Google Scholar 

  25. N. P. Gnusin, N. P. Berezina, N. A. Kononenko, and O. A. Dyomina, J. Membr. Sci. 243, 301 (2004).

    Article  CAS  Google Scholar 

  26. A. M. Sukhotin, Handbook of Electrochemistry (Khimiya, Leningrad, 1981) [in Russian].

    Google Scholar 

  27. F. Stockmeier, M. M. Schatz, M. Habermann, J. Linkhorst, A. Ali Mani, and M. Wessling, J. Membr. Sci. 640, 119846 (2021).

    Article  CAS  Google Scholar 

  28. J. J. Krol, M. Wessling, and H. Strathmann, J. Membr. Sci. 162 (1999).

  29. T. Bellon and Z. Slouka, J. Membr. Sci. 610, 118291 (2020).

    Article  CAS  Google Scholar 

  30. V. I. Zabolotskii, N. V. Shel’deshov, and N. P. Gnusin, Russ. Chem. Rev. 57, 801 (1988).

    Article  Google Scholar 

  31. V. V. Nikonenko, S. A. Mareev, N. D. Pis’menskaya, A. V. Kovalenko, M. Kh. Urtenov, A. M. Uzdenova, and G. Pourcelly, Russ. J. Electrochem. 53, 1122 (2017).

    Article  CAS  Google Scholar 

  32. S. Zyryanova, S. Mareev, V. Gil, N. Pismenskaya, V. Sarapulova, O. Rybalkina, E. Boyko, V. Nikonenko, E. Korzhova, C. Larchet, and L. Dammak, Int. J. Mol. Sci. 21, 973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. I. Rubinstein, E. Staude, and O. Kedem, Desalination 69 (1988).

  34. R. Ibanez, D. F. Stamatialis, and M. Wessling, J. Membr. Sci. 239, 119 (2004).

    Article  CAS  Google Scholar 

  35. E. M. Akberova and V. I. Vasil’eva, Electrochem. Commun. 111, 106659 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research and Administration of Krasnodar Krai (project no. 19-48-230040 p_а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Loza.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loza, N.V., Kutenko, N.A., Kononenko, N.A. et al. Transport Properties and Structure of Anisotropic Composites Based on Cation-Exchange Membranes and Polyaniline. Membr. Membr. Technol. 5, 193–208 (2023). https://doi.org/10.1134/S2517751623030058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623030058

Keywords:

Navigation