Skip to main content
Log in

Study of the Specific Adsorption of Calcium Ions on the Surface of Heterogeneous and Homogeneous Cation-Exchange Membranes to Increase Their Selectivity to Singly Charged Ions

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Ion-exchange membranes with high specific selectivity to singly charged ions are in demand in various industries. One of the ways to increase the specific selectivity can be the formation on the membrane surface of a thin layer with a charge opposite to the charge of membrane fixed groups. The possibility of forming such a layer due to the specific interaction of calcium ions with the sulfonate groups of the membrane during treatment with a high-intensity electric current in a CaCl2 solution has been investigated. The ability of heterogeneous (MK-40, Ralex CMH) and homogeneous (CMX, CJMC-5) sulfonated cation-exchange membranes to specifically adsorb calcium ions on their surface has been studied. It has been shown that the CMX membrane exhibits this ability to the greatest extent, which is due to a higher density of \(-{\text{SO}}_{3}^{ - }\) groups on its surface compared to other studied membranes. It has been found that formation of a thin positively charged layer on the surface of the CMX membrane increases the membrane permselectivity coefficient \({{P}_{{{{{\text{N}}{{{\text{a}}}^{{\text{ + }}}}} \mathord{\left/ {\vphantom {{{\text{N}}{{{\text{a}}}^{{\text{ + }}}}} {{\text{C}}{{{\text{a}}}^{{{\text{2 + }}}}}}}} \right. \kern-0em} {{\text{C}}{{{\text{a}}}^{{{\text{2 + }}}}}}}}}}\) by 69%. Moreover, the presence of such a layer does not lead to an increase in undesirable water splitting, which occurs when widely used polyelectrolytes with amino groups are applied as modifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. Luo, S. Abdu, and M. Wessling, J. Membr. Sci. 555, 429 (2018).

    Article  CAS  Google Scholar 

  2. X. Pang, Y. Tao, Y. Xu, J. Pan, J. Shen, and C. Gao, J. Membr. Sci. 595, 117544 (2020).

    Article  CAS  Google Scholar 

  3. L. Ge, B. Wu, D. Yu, A. N. Mondal, L. Hou, N. U. Afsar, Q. Li, T. Xu, J. Miao, and T. Xu, Chin. J. Chem. Eng. 25, 1606 (2017).

    Article  Google Scholar 

  4. A. T. Besha, M. T. Tsehaye, D. Aili, W. Zhang, and R. A. Tufa, Membranes 10, 7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Y. Zhang, S. Paepen, L. Pinoy, B. Meesschaert, and B. Van der Bruggen, Sep. Purif. Technol. 88, 191 (2012).

    Article  CAS  Google Scholar 

  6. A. T. K. Tran, Y. Zhang, J. Lin, P. Mondal, W. Ye, B. Meesschaert, L. Pinoy, and B. Van der Bruggen, Sep. Purif. Technol. 141, 38 (2015).

    Article  CAS  Google Scholar 

  7. R. Liu, Y. Wang, G. Wu, J. Luo, and S. Wang, Chem. Eng. J. 322, 224 (2017).

    Article  CAS  Google Scholar 

  8. Z.-Y. Guo, Z.-Y. Ji, Q.-B. Chen, J. Liu, Y.-Y. Zhao, F. Li, Z.-Y. Liu, and J.-S. Yuan, J. Clean. Prod. 193, 338 (2018).

    Article  CAS  Google Scholar 

  9. T. Sata and R. Izuo, J. Membr. Sci. 45, 209 (1989).

    Article  CAS  Google Scholar 

  10. F. Kotoka, I. Merino-Garcia, and S. Velizarov, Membranes 10, 160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. R. Femmer, A. Mani, and M. Wessling, Sci. Rep. 5, 11583 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Abdu, M.-C. Martí-Calatayud, J. E. Wong, M. García-Gabaldón, and M. Wessling, ACS Appl. Mater. Interfaces 6, 1843 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. K. A. Tsygurina, E. V. Kirichenko, and K. A. Kirichenko, Membr. Membr. Technol. 4, 11 (2022).

    Article  CAS  Google Scholar 

  14. S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, and H. Matsuyama, J. Membr. Sci. 431, 113 (2013).

    Article  CAS  Google Scholar 

  15. I. Stenina, D. Golubenko, V. Nikonenko, and A. Yaroslavtsev, Int. J. Mol. Sci. 21, 5517 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Vaselbehagh, H. Karkhanechi, R. Takagi, and H. Matsuyama, J. Membr. Sci. 490, 301 (2015).

    Article  CAS  Google Scholar 

  17. N. White, M. Misovich, A. Yaroshchuk, and M. L. Bruening, ACS Appl. Mater. Interfaces 7, 6620 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. I. Merino-Garcia, F. Kotoka, C. A. M. Portugal, J. G. Crespo, and S. Velizarov, Membranes 10, 134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Zhao, Y. Li, S. Yuan, J. Zhu, S. Houtmeyers, J. Li, R. Dewil, C. Gao, and B. J. Van der Bruggen, Mater. Chem. A 7, 6348 (2019).

    Article  CAS  Google Scholar 

  20. I. Falina, N. Loza, S. Loza, E. Titskaya, and N. Romanyuk, Membranes 11, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. E. Güler, W. van Baak, M. Saakes, and K. Nijmeijer, J. Membr. Sci. 455, 254 (2014).

    Article  Google Scholar 

  22. J. Lambert, M. Avila-Rodriguez, G. Durand, and M. Rakib, J. Membr. Sci. 280, 219 (2006).

    Article  CAS  Google Scholar 

  23. J. Pan, J. Ding, R. Tan, G. Chen, Y. Zhao, C. Gao, B. Van der Bruggen, and J. Shen, J. Membr. Sci. 539, 263 (2017).

    Article  CAS  Google Scholar 

  24. Y. Zhao, K. Tang, H. Liu, B. Van der Bruggen,  A. Sotto Diaz, J. Shen, and C. Gao, J. Membr. Sci. 520, 262 (2016).

    Article  CAS  Google Scholar 

  25. D. Khoiruddin Ariono and I. G. Subagjo Wenten, J. Appl. Polym. Sci. 134, 45540 (2017).

    Article  Google Scholar 

  26. Y. Zhao, K. Tang, H. Ruan, L. Xue, B. Van der Bruggen, C. Gao, and J. Shen, J. Membr. Sci. 536, 167 (2017).

    Article  CAS  Google Scholar 

  27. Y. Zhao, J. Zhu, J. Ding, B. Van der Bruggen, J. Shen, and C. Gao, J. Membr. Sci. 548, 81 (2018).

    Article  CAS  Google Scholar 

  28. Y. Zhao, C. Gao, and B. Van der Bruggen, Nanoscale 11, 2264 (2019).

    Article  CAS  Google Scholar 

  29. D. V. Golubenko and A. B. Yaroslavtsev, J. Membr. Sci. 635, 119466 (2021).

    Article  CAS  Google Scholar 

  30. D. Golubenko and A. Yaroslavtsev, J. Membr. Sci. 612, 118408 (2020).

    Article  CAS  Google Scholar 

  31. V. D. Titorova, I. A. Moroz, S. A. Mareev, N. D. Pismenskaya, K. G. Sabbatovskii, Y. Wang, T. Xu, and V. V. Nikonenko, J. Membr. Sci. 644, 120149 (2022).

    Article  CAS  Google Scholar 

  32. X.-Y. Nie, S.-Y. Sun, Z. Sun, X. Song, and J.-G. Yu, Desalination 403, 128 (2017).

    Article  CAS  Google Scholar 

  33. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. J. S. Newman, Electrochemical systems (Prentice Hall, New York, 1973).

    Google Scholar 

  35. V. Nikonenko, A. Nebavsky, S. Mareev, A. Kovalenko, M. Urtenov, and G. Pourcelly, Appl. Sci. 9, 25 (2018).

    Article  Google Scholar 

  36. T. Sata, T. Sata, and W. Yang, J. Membr. Sci. 206, 31 (2002).

    Article  CAS  Google Scholar 

  37. N. D. Pismenskaya, E. V. Pokhidnia, G. Pourcelly, and V. V. Nikonenko, J. Membr. Sci. 566, 54 (2018).

    Article  CAS  Google Scholar 

  38. K. A. Nebavskaya, V. V. Sarapulova, K. G. Sabbatovskiy, V. D. Sobolev, N. D. Pismenskaya, P. Sistat, M. Cretin, and V. V. Nikonenko, J. Membr. Sci. 523, 36 (2017).

    Article  CAS  Google Scholar 

  39. V. V. Gil, M. V. Porozhnyy, O. A. Rybalkina, K. G. Sabbatovskiy, and N. D. Pismenskaya, Membr. Membr. Technol. 3, 334 (2021).

    Article  CAS  Google Scholar 

  40. I. Rubinstein and B. Zaltzman, Phys. Rev. Lett. 114, 114502 (2015).

    Article  CAS  Google Scholar 

  41. N. A. Mishchuk, Adv. Colloid Interface Sci. 160, 16 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. V. G. Levich, Dokl. AN SSSR 124, 869 (1959).

    CAS  Google Scholar 

  43. S. S. Dukhin, Adv. Colloid Interface Sci. 35, 173 (1991).

    Article  CAS  Google Scholar 

  44. N. A. Mishchuk, Colloids Surf. A Physicochem. Eng. Asp. 140, 75 (1998).

    Article  CAS  Google Scholar 

  45. F. Roghmans, E. Evdochenko, F. Stockmeier, S. Schneider, A. Smailji, R. Tiwari, A. Mikosch, E. Karatay, A. Kuhne, A. Walther, A. Mani, and M. Wessling, Adv. Mater. Interfaces 6, 1801309 (2018).

    Article  Google Scholar 

  46. V. V. Nikonenko, S. A. Mareev, N. D. Pis’menskaya, A. M. Uzdenova, A. V. Kovalenko, M. Kh. Urtenov, and G. Pourcelly, Russ. J. Electrochem. 53, 1122 (2017).

    Article  CAS  Google Scholar 

  47. I. Rubinstein and B. Zaltzman, Phys. Rev. E 62, 2238 (2000).

    Article  CAS  Google Scholar 

  48. I. Rubinstein and B. Zaltzman, Math. Models Methods Appl. Sci. 11, 263 (2001).

    Article  CAS  Google Scholar 

  49. V. I. Vasil’eva, A. V. Zhil’tsova, E. M. Akberova, and A. I. Fataeva, Condens. Matter Interface 16, 257 (2014).

    Google Scholar 

  50. M. Ponomar, E. Krasnyuk, D. Butylskii, V. Nikonenko, Y. Wang, C. Jiang, T. Xu, and N. Pismenskaya, Membranes 12, 765 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. V. Sarapulova, I. Shkorkina, S. Mareev, N. Pismenskaya, N. Kononenko, C. Larchet, L. Dammak, and V. Nikonenko, Membranes 9, 84 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. E. Güler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, J. Membr. Sci. 446, 266 (2013).

    Article  Google Scholar 

  53. R. Simons, Nature 280, 824 (1979).

    Article  CAS  Google Scholar 

  54. V. I. Zabolotskii, N. V. Shel’deshov, and N. P. Gnusin, Russ. Chem. Rev. 57, 801 (1988).

    Article  Google Scholar 

  55. T. Belloň, P. Polezhaev, L. Vobecka, M. Svoboda, and Z. Slouka, J. Membr. Sci. 572, 607 (2019).

    Article  Google Scholar 

  56. M.-S. Kang, Y.-J. Choi, and S.-H. Moon, Korean J. Chem. Eng. 21, 221 (2004).

    Article  CAS  Google Scholar 

  57. V. I. Zabolotskiy, A. Y. But, V. I. Vasil’eva, E. M. Akberova, and S. S. Melnikov, J. Membr. Sci. 526, 60 (2017).

    Article  CAS  Google Scholar 

  58. T. Belloň and Z. Slouka, J. Membr. Sci. 610, 118291 (2020).

    Article  Google Scholar 

  59. M. V. Porozhnyy, S. A. Shkirskaya, D. Y. Butylskii, V. V. Dotsenko, E. Y. Safronova, A. B. Yaroslavtsev, S. Deabate, P. Huguet, and V. V. Nikonenko, Electrochim. Acta 370, 137689 (2021).

    Article  CAS  Google Scholar 

  60. V. Gil, M. Porozhnyy, O. Rybalkina, D. Butylskii, and N. Pismenskaya, Membranes 10, 125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. E. D. Belashova, N. A. Melnik, N. D. Pismenskaya, K. A. Shevtsova, A. V. Nebavsky, K. A. Lebedev, and V. V. Nikonenko, Electrochim. Acta 59, 412 (2012).

    Article  CAS  Google Scholar 

  62. V. Sarapulova, N. Pismenskaya, D. Butylskii, V. Titorova, Y. Wang, T. Xu, Y. Zhang, and V. Nikonenko, Membranes 10, 165 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. A. Chapotot, G. Pourcelly, and C. Gavach, J. Membr. Sci. 96, 167 (1994).

    Article  CAS  Google Scholar 

  64. S. Abdu, M.-C. Martí-Calatayud, J. E. Wong, M. García-Gabaldón, and M. Wessling, ACS Appl. Mater. Interfaces 6, 1843 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Kuban Science Foundation, project no. N-21.1/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Gil.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, V.V., Ruleva, V.D., Porozhnyy, M.V. et al. Study of the Specific Adsorption of Calcium Ions on the Surface of Heterogeneous and Homogeneous Cation-Exchange Membranes to Increase Their Selectivity to Singly Charged Ions. Membr. Membr. Technol. 5, 156–167 (2023). https://doi.org/10.1134/S2517751623030046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623030046

Keywords:

Navigation