Skip to main content
Log in

Features of the Process of Galvanic Deposition of Metals into the Pores of Ion Track Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The paper considers the specific features of obtaining metal nanowires by matrix synthesis based on track membranes. The first part of the work considers the main ideas of the method and reviews the published sources devoted to producing nanowires of various types—single-component (from one metal) and multicomponent (from two or several metals). Variants of obtaining homogeneous structures (so-called alloyed nanowires) and heterogeneous structures (so-called layered nanowires) are considered for the latter case. A series of specific features of the electrodeposition method in the case of carrying out the process in a limited volume of membrane pores is considered. The second part of the work considers the experimental results obtained by the authors upon studying the electrodeposition of nanowires made of an iron–nickel alloy. The aim is to find a relationship between the conditions of the synthesis of nanowires and their structure and elemental composition. The features of the electrodeposition of nanowires are investigated and their topography is studied by electron microscopy (with elemental analysis); X-ray method is applied for studying the structure. So-called abnormal electrodeposition of iron is detected. The dependence of the integral elemental composition of the obtained nanowires on the pore diameter and growth voltage is discussed. Data on the nature of distribution of elements along the length of the nanowires are obtained; it is shown that the nonuniformity of the composition is determined by the conditions of production (in particular, different diffusion mobilities of ions in narrow pore channels) as well as depends on the voltage and diameter of the pore channels. Based on the X-ray diffraction data, the type of the lattice (FCC) is determined, and the nature of the change in the lattice parameter is shown which is presumably associated with the difference in the ionic radii of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. A. Durrani and R. K. Bull, Solid State Nuclear Track Detection: Principles, Methods and Applications (Pergamon Press, Oxford, 1987).

    Google Scholar 

  2. G. N. Flerov, Vestn. Akad. Nauk SSSR 4, 35 (1984).

    Google Scholar 

  3. T. D. Brock, Membrane Filtration (Springer-Verlag, Berlin, Heidelberg, New York, 1983).

    Book  Google Scholar 

  4. P. Yu. Apel’ and S. N. Dmitriev, Membrany 3, 32 (2004).

    Google Scholar 

  5. G. E. Possin, Rev. Sci. Instrum. 41, 772 (1970).

    Article  CAS  Google Scholar 

  6. S. Kawai and R. J. Ueda, Electrochem. Soc. 112, 32 (1975).

    Article  Google Scholar 

  7. S. K. Chakavarti and J. Vetter, Nucl. Instrum. Methods. Phys. Res. B 62, 109 (1991).

    Article  Google Scholar 

  8. J. Vetter and R. Spohr, Nucl. Instrum. Methods. Phys. Res. B 79, 691 (1993).

  9. S. Martin, Science 268, 1961 (1994).

    Article  Google Scholar 

  10. H. Masuda and K. Fukuda, Science 268, 1466 (1995).

    Article  CAS  Google Scholar 

  11. A. Eliseev and A. Lukashin, Functional Nanomaterials (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  12. V. M. Anishchik, Nanomaterials and Nanotechnologies (Izd-vo BGU, Minsk, 2008) [in Russian].

    Google Scholar 

  13. M. E. Toimil-Molares and J. Beilstein, Nanotecnology 3, 860 (2012).

    Google Scholar 

  14. A. A. Ivanov and V. A. Orlov, Phys. Solid State 53, 2441 (2011).

    Article  CAS  Google Scholar 

  15. N. Lupu, Electrodeposited Nanowires and Their Applications (Intech, 2010).

    Book  Google Scholar 

  16. G. N. Akapiev, S. N. Dmitriev, B. Erler, V. V. Shirkova, A. Shultz, and H. Pietsch, Nucl. Instrum. Methods. Phys. Res. B 208, 133 (2003).

    Article  CAS  Google Scholar 

  17. A. Schulz, G. N. Akapiev, V. V. Shirkova, H. Rosler, and S. N. Dmitriev, Nucl. Instrum. Methods. Phys. Res. B 236, 254 (2005).

    Article  CAS  Google Scholar 

  18. D. V. Panov, V. Yu. Bychkov, Yu. P. Tyulenin, D. L. Zagorskii, V. M. Kanevskiy, and I. S. Volchkov, J. Surf. Invest. 15, 1264 (2021).

    Article  CAS  Google Scholar 

  19. F. Maurer, A. Dangwal, D. Lysenkov, G. Muller, M. E. Toimil-Molares, C. Trautmann, J. Brotz, and H. Fuess, Nucl. Instrum. Methods. Phys. Res. B 245, 337 (2006).

    Article  CAS  Google Scholar 

  20. A. Dangwal, C. S. Pandey, G. Muller, S. Karim, T. W. Cornelius, and C. Trautmann, Appl. Phys. Lett. 92, 063115 (2008).

    Article  Google Scholar 

  21. D. L. Zagorskiy and S. A. Bedin, Radiat. Meas. 44, 1123 (2009).

    Article  Google Scholar 

  22. V. A. Oleinikov, D. L. Zagorski, S. A. Bedin, A. A. Volosnikov, P. A. Emelyanov, Y. P. Kozmin, and B. V. Mchedlishvili, Radiat. Meas. 43, 365 (2008).

    Article  Google Scholar 

  23. E. P. Kozhina, S. A. Bedin, N. L. Nechaeva, S. N. Podoynitsyn, S. N. Andreev, Y. V. Grigoriev, and A. V. Naumov, Appl. Sci. 11, 1375 (2021).

    Article  CAS  Google Scholar 

  24. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  25. L. Piraux, Appl. Sci. 10, 1832 (2020).

    Article  CAS  Google Scholar 

  26. V. V. Korotkov, V. N. Kudryavtsev, D. L. Zagorskii, and S. A. Bedin, Gal’vanotekh. Obrab. Poverkh. 19, 23 (2011).

    Google Scholar 

  27. V. V. Korotkov, V. N. Kudryavtsev, S. S. Kruglikov, D. L. Zagorskii, S. N. Sul’yanov, and S. A. Bedin, Gal’vanotekh. Obrab. Poverkh. 23, 24 (2005).

    Google Scholar 

  28. S. S. Kruglikov, D. L. Zagorskii, V. A. Kolesnikov, I. M. Doludenko, and S. A. Bedin, Theor. Found. Chem. Eng. 55, 942 (2021).

    Article  CAS  Google Scholar 

  29. M. Vazquez, Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications (Elsevier, Woodhead Publishing, 2015).

    Google Scholar 

  30. A. A. Davydov and V. M. Volgin, Russ. J. Electrochem. 52, 806 (2016).

    Article  CAS  Google Scholar 

  31. N. Mansouri, N. Benbrahim-Cherief, E. Chainet, F. Charlot, T. Encinas, S. Boudinar, B. Benfedda, L. Hamadou, and A. Kadri, J. Magn. Magn. Mater. 493, 165746 (2020).

    Article  CAS  Google Scholar 

  32. D. L. Zagorskiy, I. M. Doludenko, V. M. Kanevsky, A. R. Gilimyanova, V. P. Menushenkov, and E. S. Savchenko, Bull. Russ. Acad. Sci. Phys. 85, 848 (2021).

    Article  CAS  Google Scholar 

  33. A. Fert and L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999).

    Article  CAS  Google Scholar 

  34. A. Mourachkine, O. V. Yazyev, C. Ducati, and J.‑Ph. Ansermet, NANO Letters 8, 3683 (2008).

    Article  CAS  Google Scholar 

  35. C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B. K. Ju, and J. M. Hong, Sci. Rep. 8, 2763 (2018).

    Article  PubMed Central  Google Scholar 

  36. P. Ripka, V. Grim, M. Mirzaei, D. Hrakova, J. Uhrig, F. Emmerich, Ch. Thielemann, J. Hejtmanek, O. Kaman, and R. Tesar, Sensors 21, 1 (2021).

    Article  Google Scholar 

  37. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).

    Article  CAS  Google Scholar 

  38. Yu. V. Gulyaev, S. G. Chigarev, A. I. Panas, E. A. Vilkov, N. A. Maksimov, D. L. Zagorskii, and A. S. Shatalov, Tech. Phys. Lett. 45, 271 (2019).

    Article  CAS  Google Scholar 

  39. O. M. Zhigalina, D. N. Khmelenin, I. M. Ivanov, I. M. Doludenko, and D. L. Zagorsky, Cryst. Rep. 66, 1109 (2021).

    Article  CAS  Google Scholar 

  40. D. Zagorskiy, I. Doludenko, O. Zhigalina, D. Khmelenin, and V. Kanevskiy, Membranes 12, 195 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  41. I. M. Doludenko, Perspekt. Mater. 8, 74 (2021).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to P.Yu. Apel’ (Joint Institute of Nuclear Research, Dubna) for providing ion track membranes and S.S. Kruglikov (Mendeleev University of Chemical Technology of Russia) for valuable consultations.

Funding

This work was performed within the framework of a state task to the National Research Center “Crystallography and Photonics,” Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Doludenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagorskiy, D.L., Doludenko, I.M. & Khairetdinova, D.R. Features of the Process of Galvanic Deposition of Metals into the Pores of Ion Track Membranes. Membr. Membr. Technol. 5, 115–127 (2023). https://doi.org/10.1134/S2517751623020075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623020075

Keywords:

Navigation