Skip to main content
Log in

Structural Features of 4-VP-HEMA-SiO2 Hybrid Membranes and Their Proton Conductivity

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Hybrid organic-inorganic membranes based on tetraethoxysilane and orthophosphoric acid-doped copolymers of 4-vinylpyridine (4-VP) and 2-hydroxyethyl methacrylate (HEMA) have been formed by the sol-gel synthesis method. The membranes are characterized by high values of exchange capacity and proton conductivity. An increase in the proton conductivity of hybrid organo-inorganic membranes compared to the initial copolymer can be associated with the generation of crystallization water during the formation of a silicon dioxide fragment, which follows from quantum-chemical modeling of the local structure of the membrane. The latter includes an organic part from the copolymerization product of 4-VP with HEMA (44 atoms) and an inorganic part of 27 atoms, repeating the structure of the silicon dioxide block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. Honma, H. Nakayama, O. Nishikawa, T. Sugimoto, and S. Nomura, Solid State Ionics 162–163, 237 (2003).

    Article  Google Scholar 

  2. A. B. Yaroslavtsev, Russ. Chem. Rev. 85, 1255 (2016).

    Article  CAS  Google Scholar 

  3. V. S. Ivanov, A. S. Yegorov, G. R. Allakhverdov, and V. V. Men’shikov, Oriental J. Chem. 34, 255 (2018).

    Article  CAS  Google Scholar 

  4. Guizhen Guo, Sun Youyi, Fu Qiang, MaYibing, Zhou Yaya, Xiong Zhiyuan, and Liu Yaqing, Int. J. Hydrogen Energy 44, 6103 (2019).

    Article  CAS  Google Scholar 

  5. Zhang Xiaoyu, Shiyuan Yu, Qian Zhu, and Lianhua Zhao, Int. J. Hydrogen Energy 44, 6148 (2019).

    Article  CAS  Google Scholar 

  6. Wang Yuanyuan, Xu Jingmei, Zang Huan, and Wang Zhe, Int. J. Hydrogen Energy 44, 6136 (2019).

    Article  CAS  Google Scholar 

  7. K. Brijesh, K. Bindu, Shanbhag Dhanush, and H. S. Nagaraja, Int. J. Hydrogen Energy 44, 757 (2019).

    Article  CAS  Google Scholar 

  8. M. V. Markova, D. M. Mognonov, L. V. Morozova, A. I. Mikhaleva, and B. A. Trofimov, Polym. Sci. Ser. B 56, 229 (2014).

    Article  CAS  Google Scholar 

  9. S. Roy, S. Saha, A. G. Kumar, A. Ghorai, and S. Banerjee, J. Appl. Polym. Sci. 137, 48514 (2020).

    Article  CAS  Google Scholar 

  10. E. Yu. Safronova, A. V. Parshina, K. Yu. Yankina, E. A. Ryzhkova, A. A. Lysova, O. V. Bobreshova, and A. B. Yaroslavtsev, Pet. Chem. 57, 327 (2017).

    Article  CAS  Google Scholar 

  11. S. A. Makulova, Yu. A. Karavanova, I. I. Ponomarev, I. A. Stenina, and Yu. A. Volkova, Pet. Chem. 58, 304 (2018).

    Article  CAS  Google Scholar 

  12. I. A. Prikhno, E. Y. Safronova, and A. B. Ilyin, Pet. Chem. 57, 1228 (2017).

    Article  CAS  Google Scholar 

  13. F. A. Yaroshenko and V. A. Burmistrov, Pet. Chem. 58, 249 (2018).

    Article  Google Scholar 

  14. K. Brijesh and K. Bindu, Int. J. Hydrogen Energy 44 (2019).

  15. H. Pan, Ya. Zhang, H. Pu, and Z. Chang, J. Sources Energy 263, 195 (2014).

    Article  CAS  Google Scholar 

  16. O. V. Lebedeva, Y. N. Pozhidaev, and E. I. Sipkina, Adv. Mater. Res. 749, 71 (2013).

    Article  Google Scholar 

  17. O. V. Lebedeva, E. I. Sipkina, and Yu. N. Pozhidaev, Pet. Chem. 56, 401 (2016).

    Article  CAS  Google Scholar 

  18. A. I. Emelyanov, O. V. Lebedeva, E. A. Malakhova, T. V. Raskulova, Y. N. Pozhidaev, Y. A. Verkhozina, L. I. Larina, S. A. Korzhova, G. F. Prozorova, and A. S. Pozdnyakov, Membr. Membr. Technol. 3, 147 (2021).

    Article  CAS  Google Scholar 

  19. A. Chesnokova, O. V. Lebedeva, Y. N. Pozhidaev, E. A. Malakhova, T. V. Raskulova, V. Kulshrestha, A. V. Kuzmin, and A. S. Pozdnyakov, Int. J. Hydrogen Energy 45, 18716 (2020).

    Article  CAS  Google Scholar 

  20. A. K. Osipov, I. A. Prikhno, and A. B. Yaroslavtsev, Pet. Chem. 58, 1129 (2018).

    Article  CAS  Google Scholar 

  21. F. Neese, Comput. Mol. Sci. 2, 73 (2012).

    Article  CAS  Google Scholar 

  22. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  23. J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

    Article  CAS  Google Scholar 

  24. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

    Article  CAS  Google Scholar 

  25. L. V. Fomina, E. A. Malakhova, O. V. Lebedeva, Yu. N. Pozhidaev, S. A. Beznosyuk, A. S. Fomin, and T. V. Raskulova, Vest. Angarsk. Gos. Tekhn. Univ. 13, 81 (2019).

  26. O. V. Lebedeva, Yu. N. Pozhidaev, N. S. Shaglaeva, A. S. Pozdnyakov, and S. S. Bochkareva, Khim. Tekhnol. 11, 20 (2010).

    CAS  Google Scholar 

  27. A. N. Chesnokova, O. V. Lebedeva, Y. N. Pozhidaev, N. A. Ivanov, and A. E. Rzhechitskii, Adv. Mater. Res. 884–885, 251 (2014).

    Article  Google Scholar 

  28. G. I. Dobryanskaya, Yu. L. Zub, M. Barchak, and A. Dabrowski, Colloid. J. 68, 548 (2006).

    Article  CAS  Google Scholar 

  29. K. A. Andrianov, Silicone Compounds (Goskhimizdat, Moscow, 1955) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Lebedeva or T. V. Raskulova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, O.V., Raskulova, T.V., Beznosyuk, S.A. et al. Structural Features of 4-VP-HEMA-SiO2 Hybrid Membranes and Their Proton Conductivity. Membr. Membr. Technol. 5, 92–97 (2023). https://doi.org/10.1134/S251775162302004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S251775162302004X

Keywords:

Navigation