Skip to main content
Log in

Separation of Archipelago- and Continent-Type Asphaltenes on Ultrafiltration Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript


Asphaltenes, which are macromolecular compounds contained in heavy oils, tend to aggregate and precipitate, thereby causing a number of problems during oil transportation and refining. The tendency toward aggregation is primarily manifested by molecules with the continental architecture, while asphaltenes with the archipelago molecular structure, on the contrary, contribute to the stability of the petroleum fluid. Selective removal of the continental asphaltene fraction from the oil reduces deposit formation and viscosity, thereby mitigating the problems in oil transportation, storage, and processing. In this study, the possibility of using polyacrylonitrile membranes for the selective separation of continent type asphaltenes prone to aggregation from their archipelago molecules has been explored. For this purpose, the filtration separation of solutions of asphaltenes and fuel oil in toluene has been studied using membranes with a pore size larger than the size of asphaltene molecules. It has been shown that during filtration through such membranes, agglomerates of molecules rather than individual species are retained. With a relatively low total membrane rejection of 35–67%, this makes it possible to effectively separate continental asphaltenes prone to agglomeration, for which the rejection reached 90%, from the archipelago-type molecules. The maximum difference between the membrane rejections of the continent and archipelago molecules has been observed at low concentrations of asphaltenes, so that the most efficient separation of the components can be achieved. At the same time, significant membrane fouling has been observed in the case of filtration of solutions of M-100 fuel oil in toluene with a concentration of 2–10 g/L. This effect depends on the concentration of dissolved substances, and the decline in membrane permeability is significantly slowed down by decreasing the fuel oil content. At low concentrations, the decrease in flux through the membranes during filtration did not exceed 18%, providing permeate fluxes of more than 286 L/(m2 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others


  1. Yu. M. Ganeeva, T. N. Yusupova, and G. V. Romanov, Russ. Chem. Rev. 80, 993 (2011).

    Article  CAS  Google Scholar 

  2. E. Rogel, M. Roye, J. Vien, and T. Miao, Energy Fuels 29, 2143 (2015).

    Article  CAS  Google Scholar 

  3. O. C. Mullins, D. J. Seifert, J. Y. Zuo, and M. Zeybek, Energy Fuels 27, 1752 (2012).

    Article  Google Scholar 

  4. K. Sepideh, M. N. Lotfollahi, and A. Shahrabadi, Petr. Chem. 59, 1201 (2019).

    Article  Google Scholar 

  5. L. B. Gutierrez, M. A. Ranaudo, B. Mendez, and S. Acevedo, Energy Fuels 6, 624 (2001).

    Article  Google Scholar 

  6. S. Fakher, M. Ahdaya, M. Elturki, and A. Imqam, J. Pet. Explor. Prod. Technol. 10, 1183 (2020)

    Article  CAS  Google Scholar 

  7. P. Wattana, H. S. Fogler, A. Yen, GarciaM. D. Carmen, and L. Carbognani, Energy Fuels 19, 101 (2005).

    Article  CAS  Google Scholar 

  8. F. M. Sultanov and I. R. Khairutdinov, Mir Nefteprod.: Vestn. Neft. Kompanii 2, 15 (2006).

    Google Scholar 

  9. M. A. Karambeigi and R. Kharrat, Petr. Sci. Technol. 32, 1213 (2014).

    Article  CAS  Google Scholar 

  10. T. J. Behbahani, A. A. Miranbeigi, and K. Sharifi, Petr. Chem. 57, 874 (2017).

    Article  Google Scholar 

  11. A. W. Marczewski and M. Szymula, Colloids Surf. A 208, 259 (2002).

    Article  CAS  Google Scholar 

  12. W. A. Abdallah and S. D. Taylor, Nucl. Instrum. Methods Phys. Res., Sect. B 258, 213 (2007).

    CAS  Google Scholar 

  13. C. Franco, E. Patiño, P. Benjumea, M. A. Ruiz, and F. B. Cortés, Fuel 105, 408 (2013).

    Article  CAS  Google Scholar 

  14. P. Yu. Apel, O. V. Bobreshova, A. V. Volkov, V. V. Volkov, V. V. Nikonenko, I. A. Stenina, A. N. Filippov, Yu. P. Yampolskii, A. B. Yaroslavtsev, Membr. Membr. Technol. 9, 59 (2019).

    Google Scholar 

  15. M. Ashtari, S. N. Ashrafizadeh, and M. Bayat, J. Petr. Sci. Eng. 82, 44 (2012).

    Article  Google Scholar 

  16. W. C. Lai and K. J. Smith, Fuel 80, 1121 (2001).

    Article  CAS  Google Scholar 

  17. M. J. T. M. Ching, A. E. Pomerantz, A. B. Andrews, P. Dryden, R. Schroeder, O. C. Mullins, and C. Harrison, Energy Fuels 24, 5028 (2010).

    Article  CAS  Google Scholar 

  18. J. Marques, I. Merdrignac, A. Baudot, L. Barré, D. Guillaume, D. Espinat, and S. Brunet, Oil Gas Sci. Technol. 63, 139 (2008).

    Article  CAS  Google Scholar 

  19. G. Dibrov, G. Kagramanov, V. Sudin, E. Grushevenko, A. Yushkin, and A. Volkov, Membranes 10, 356 (2020).

    Article  CAS  Google Scholar 

  20. V. P. Kasperchik, A. L. Yaskevich, and A. V. Bil’dyukevich, Krit. Tekhnol. Membr. 28, 35 (2005).

    Google Scholar 

  21. A. A. Yushkin, M. N. Efimov, A. A. Vasilev, Yu. G. Bogdanova, V. D. Dolzhikova, G. P. Karpacheva, and A. V. Volkov, Petr. Chem. 57, 341 (2017).

    Article  CAS  Google Scholar 

Download references


This study was supported by the Russian Foundation for Basic Research, project no. 18-08-00837_a.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. A. Yushkin.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkin, A.A., Balynin, A.V., Nekhaev, A.I. et al. Separation of Archipelago- and Continent-Type Asphaltenes on Ultrafiltration Membranes. Membr. Membr. Technol. 3, 139–145 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: