Skip to main content
Log in

Evolution of Current–Voltage Characteristics and Surface Morphology of Homogeneous Anion-Exchange Membranes during the Electrodialysis Desalination of Alkali Metal Salt Solutions

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

It has been found that after 300 h of operation of AMX and AMX-Sb anion-exchange membranes (Astom, Japan) in overlimiting current regimes in the process of electrodialysis desalination of 0.02 M NaCl, NH4Cl, NaH2PO4, and KC4H5O6 (KHT) solutions, the limiting currents, \(i_{{\lim }}^{{\exp }}\), determined by graphic processing of current–voltage curves increase in the order NaCl < NaH2PO4 < KHT. Their increments relative to those for the “fresh” membrane are 33, 90, and 128%, respectively. The growth in \(i_{{\lim }}^{{\exp }}\) is accompanied by an increase in the thickness of the samples occurring in the NaH2PO4 and KHT solutions. In the case of NH4Cl, the values of \(i_{{\lim }}^{{\exp }}\) decrease. It has been shown that a small decrease in counterion transport numbers during membrane operation has almost no effect on the values of limiting currents. The main contribution to the increase in \(i_{{\lim }}^{{\exp }}\) is apparently made by electroconvection, which develops according to the mechanism of electroosmosis of the first kind. Its development is facilitated by the growth in the number and size of free-standing micrometer-sized cavities on the surface of anion-exchange membranes, the area and linear dimensions of which increase in the order NaCl < NaH2PO4 < KHT. These cavities are formed as a result of enhancement of electrochemical degradation of the ion-exchange material and the inert filler polyvinyl chloride at the membrane/solution interface in ampholyte solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. Shi, W. S. Simplicio, G. Wu, et al., Curr. Pollut. Rep. 4 (2), 74–83.

  2. A. Al-Mamun, W. Ahmad, M. S. Baawain, et al., J. Clean. Prod. 183, 458 (2018).

    Article  CAS  Google Scholar 

  3. J. Ran, L. Wu, Y. He, et al., J. Membr. Sci. 522, 267 (2017).

    Article  CAS  Google Scholar 

  4. C. R. Gally, T. Benvenuti, C. D. M. da Trindade, et al., J. Environ. Chem. Eng. 6, 5855 (2018).

    Article  CAS  Google Scholar 

  5. S. Kazuhisa, J. Membr. Sci. 309, 175 (2008).

    Article  CAS  Google Scholar 

  6. S. Galier and H. Roux-de Balmann, Sep. Purif. Technol. 77, 237 (2011).

    Article  CAS  Google Scholar 

  7. H. Luo, X. Cheng, G. Liu, et al., J. Membr. Sci. 523, 122 (2017).

    Article  CAS  Google Scholar 

  8. E. Husson, M. Araya-Farias, Y. Desjardins, and L. Bazinet, Innov. Food Sci. Emerging Technol. 17, 153 (2013).

    Article  CAS  Google Scholar 

  9. X. Zhu and R. Bai, Curr. Pharm. Des. 23, 218 (2017).

    CAS  PubMed  Google Scholar 

  10. W. Garcia-Vasquez, L. Dammak, C. Larchet, et al., J. Membr. Sci. 446, 255 (2013).

    Article  CAS  Google Scholar 

  11. S. Suwal, J. Amiot, L. Beaulieu, and L. Bazinet, J. Membr. Sci. 510, 405 (2016).

    Article  CAS  Google Scholar 

  12. V. Sarapulova, E. Nevakshenova, X. Nebavskaya, et al., J. Membr. Sci. 559, 170 (2018).

    Article  CAS  Google Scholar 

  13. G. Merle, M. Wessling, and K. Nijmeijer, J. Membr. Sci. 377, 1 (2011).

    Article  CAS  Google Scholar 

  14. Y. Mizutani, J. Membr. Sci. 49, 121 (1990).

    Article  CAS  Google Scholar 

  15. J.-H. Choi and S.-H. Moon, J. Colloid Interface Sci. 265, 93 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. S. A. Mareev, D. Yu. Butylskii, N. D. Pismenskaya, et al., J. Membr. Sci. 563, 768 (2018).

    Article  CAS  Google Scholar 

  17. GOST (State Standard) 17553-72: Ion-Exchange Membranes: Methods for Preparation of Specimens for Tests (Izd. Standartov, Moscow, 1972) [in Russian].

  18. N. D. Pismenskaya, E. E. Nevakshenova, and V. V. Nikonenko, Pet. Chem. 58, 465 (2018).

    Article  CAS  Google Scholar 

  19. R. Lteif, L. Dammak, C. Larchet, and B. Auclair, Eur. Polym. J. 35, 1187 (1999).

    Article  CAS  Google Scholar 

  20. V. I. Zabolotsky and V. V. Nikonenko, J. Membr. Sci. 79, 181 (1993).

    Article  CAS  Google Scholar 

  21. C. Larchet, L. Dammak, B. Auclair, et al., New J. Chem. 28, 1260 (2004).

    Article  CAS  Google Scholar 

  22. V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  23. N. P. Gnusin, N. P. Berezina, A. A. Shudrenko, and O. P. Ivina, Zh. Fiz. Khim. 68, 565 (1994).

    CAS  Google Scholar 

  24. E. D. Belashova, O. A. Kharchenko, V. V. Sarapulova, et al. Pet. Chem. 57, 1145 (2017).

    Article  Google Scholar 

  25. H.-W. Rösler, F. Maletzki, and E. A. Staude, J. Membr. Sci. 72, 171 (1992).

    Article  Google Scholar 

  26. J. S. Newman, Electrochemical Systems (Prentice Hall, Englewood Cliffs, 1973), p. 309.

    Google Scholar 

  27. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 1995).

    Google Scholar 

  28. E. Korzhova, N. Pismenskaya, D. Lopatin, et al., J. Membr. Sci. 500, 161 (2016).

    Article  CAS  Google Scholar 

  29. E. Kniaginicheva, N. Pismenskaya, S. Melnikov, et al., J. Membr. Sci. 496, 78 (2015).

    Article  CAS  Google Scholar 

  30. N. D. Pismenskaya, E. V. Pokhidnia, G. Pourcelly, and V. V. Nikonenko, J. Membr. Sci. 566, 54 (2018).

    Article  CAS  Google Scholar 

  31. P. E. Mason, J. M. Cruickshank, G. W. Neilson, and P. Buchanan, PhysChemChemPhys. 5, 4686 (2003).

    CAS  Google Scholar 

  32. Y. Koga, T. Kondo, Y. Miyazaki, and A. Inaba, J. Solution Chem. 41, 1388 (2012).

    Article  CAS  Google Scholar 

  33. F. G. Helfferich, Ion Exchange (McGraw-Hill, New York, 1962).

  34. V. Sarapulova, E. Nevakshenova, N. Pismenskaya, L. Dammak, V. Nikonenko, J. Membr. Sci. 479, 28–38 (2015).

  35. V. V. Nikonenko, S. A. Mareev, N. D. Pis’menskaya, et al., Russ. J. Electrochem. 53, 1122 (2017).

    Article  CAS  Google Scholar 

  36. N. A. Mishchuk, Adv. Colloid Interface Sci. 160, 16 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. I. Rubinstein and B. Zaltzman, Phys. Rev. Lett. 114, 114502 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. K. A. Nebavskaya, V. V. Sarapulova, K. G. Sabbatovskiy, et al., J. Membr. Sci. 523, 36 (2017).

    Article  CAS  Google Scholar 

  39. N. D. Pismenskaya, V. V. Nikonenko, N. A. Melnik, et al., J. Phys. Chem. B 116, 2145 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. K. F. Hagesteijn, S. Jiang, and B. P. Ladewig, J. Mater. Sci. 53, 11131 (2018).

    Article  CAS  Google Scholar 

  41. R. Simons, Electrochim. Acta 29, 151 (1984).

    Article  CAS  Google Scholar 

  42. S. H. Pine Org. React. 18, 403 (1970).

  43. O. A. Kozaderova, S. I. Niftaliev, and K. B. Kim, Russ. J. Electrochem, 54, 363 (2018).

    Article  CAS  Google Scholar 

  44. V. I. Zabolotskii, N. V. Shel’deshov, and N. P. Gnusin, Russ. Chem. Rev. 57, 801 (1988).

    Article  Google Scholar 

  45. T. Sata, M. Tsujimoto, T. Yamaguchi, and K. Matsusaki, J. Membr. Sci. 112, 161 (1996).

    Article  CAS  Google Scholar 

  46. K. S. Minsker and G. T. Fedoseeva, Degradation and Stabilization of Polyvinyl Chloride, 2nd Ed. (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-48-230852 reg_a. The authors thank the scientific and educational environmental–analytical center at the Kuban State University (unique project identifier RFMEFI59317Х0008) for providing scientific equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Rybalkina.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybalkina, O.A., Tsygurina, K.A., Sarapulova, V.V. et al. Evolution of Current–Voltage Characteristics and Surface Morphology of Homogeneous Anion-Exchange Membranes during the Electrodialysis Desalination of Alkali Metal Salt Solutions. Membr. Membr. Technol. 1, 107–119 (2019). https://doi.org/10.1134/S2517751619020094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751619020094

Keywords:

Navigation