Abstract
This article is a short overview of the problem of controllable magnetic spin communication as an important ingredient of spintronics and molecular electronics. We discuss the problem of communication of the two localized spins mediated by the mobile electron which is shared between two non-magnetic sites coupled to the mobile spins. The model system which is assumed to mimic the key features of spin communication has a tetrameric linear structure with two terminal spins connected via the central mixed-valence (MV) dimeric unit. We propose a “toy” model which is expected to describe the exchange coupling between the localized spins mediated by the itinerant electron in complex systems such as reduced polyoxometalates hosting metal ions. The proposed model is parametric and intentionally simplified in order to give a qualitative insight on a wide class of the systems bearing in mind the main physical phenomena and at the same time avoiding analysis of their specific details. The model takes into account the following interactions peculiar for complex systems: electron transfer in the MV moiety, magnetic exchange between the localized spins and the delocalized electrons, coupling of delocalized electron with molecular vibrations and interaction of the system with an external electric field. The aim of the model is to describe in a parametric way a series of compounds with partially delocalized electrons with minimal number of the fitting parameters that reflect the main physical features of complex systems. To make the conclusions imaginative we discuss the limiting cases in details. In the case of relatively strong exchange coupling the combined action of the named interactions is shown to give rise to a specific kind of double exchange coupling termed here “external core” double exchange. In the opposite case of relatively strong electron transfer we arrive to an effective indirect exchange. A possibility to control the coupling between the localized spins by the external electric field acting on the mobile electron is discussed. It is demonstrated that the effect of the electric field on the strength of spin communication is amplified by the vibronic coupling so that this coupling decreases the value of the field required for a tangible control of the strength of spin communication. In the presentation of the problem we sought to emphasize the main concepts in a qualitative way cleared of mathematical details addressing the review, that we referrer as tutorial, to a wide audience of the readers: chemists, physicists and specialists in materials science.
This is a preview of subscription content, access via your institution.
















REFERENCES
Herrmann, C., J. Phys. Chem. A, 2019, vol. 123, no. 47, p. 10205.
Launay, J.-P., Coord. Chem. Rev., 2013, vol. 257, p. 1544.
Nitzan, A., J. Phys. Chem. A, 2001, vol. 105, no. 12, p. 2677.
López, X., Carbó, J.J., Bo, C., and Poblet, J.M., Chem. Soc. Rev., 2012, vol. 41, no. 22, p. 7537.
Monakhov, K.Yu., Bensch, W., and Kögerler, P., Chem. Soc. Rev., 2015, vol. 44, no. 23, p. 8443.
Long, D.L., Tsunashima, R., and Cronin, L., Angew. Chem, Int. Ed., 2010, vol. 49, no. 10, p. 1736.
Proust, A., Thouvenot, R., and Gouzerh, P., Chem. Commun., 2008, vol. 2008, p. 1837.
Mizuno, N. and Yamaguchi, K., Chem. Rec., 2006, vol. 6, no. 1, p. 12.
Altirriba, J., Barbera, A., Del Zotto, H., Nadal, B., Piquer, S., Sánchez-Pla, A., Gagliardino, J.J., and Gomis, R., BMC Genomics, 2009, vol. 10, p. 406.
Aureliano, M. and Crans, D.C., J. Inorg. Biochem., 2009, vol. 103, p. 536.
Müller, A., Luban, M., Schröder, C., Modler, R., Kögerler, P., Axenovich, M., Schnack, J., Canfield, P., Bud’ko, S., and Harrison, N., ChemPhysChem., 2001, vol. 2, nos. 8–9, p. 517.
Müller, A., Peters, F., Pope, M.T., and Gatteschi, D., Chem. Rev., 1998, vol. 98, p. 239.
Barbour, A., Luttrell, R.D., Choi, J., Musfeldt, J.L., Zipse, D., Dalal, N.S., Boukhvalov, D.W., Dobrovitski, V.V., Katsnelson, M.I., Lichtenstein, A.I., Harmon, B.N., and Kögerler, P., Phys. Rev. B, 2006, vol. 74, p. 014411.
Yin, Q., Tan, J.M., Besson, C., Geletii, Y.V., Musaev, D.G., Kuznetsov, A.E., Luo, Z., Hardcastle, K.I., and Hill, C.L., Science, 2010, vol. 328, p. 342.
Weinstock, I.A., Barbuzzi, E.M.G., Wemple, M.W., Cowan, J.J., Reiner, R.S., Sonnen, D.M., Heintz, R.A., Bond, J.S., and Hill, C.L., Nature, 2001, vol. 414, p. 191.
Geletii, Y.V., Botar, B., Kögerler, P., Hillesheim, D.A., Musaev, D.G., and Hill, C.L., Angew. Chem., Int. Ed., 2008, vol. 47, no. 21, p. 3896.
Kamata, K., Yonehara, K., Nakagawa, Y., Uehara, K., and Mizuno, N., Nat. Chem., 2010, vol. 2, no. 6, p. 478.
Sadakane, M. and Steckhan, E., Chem. Rev., 1998, vol. 98, p. 219.
Kozhevnikov, I.V., Catalysis by Polyoxometalates, Chichester: Wiley, 2002.
Palii, A., Aldoshin, S., Tsukerblat, B, Clemente-Juan, J.M., Gaita-Ariño, A., and Coronado, E., Phys. Chem. Chem. Phys., 2017, vol. 19, no. 38, p. 26098.
Palii, A., Aldoshin, S., Tsukerblat, B, Clemente-Juan, J.M., and Coronado, E., J. Phys. Chem. C, 2019, vol. 123, p. 5746.
Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., and Tsukerblat, B.S., Chem. Phys., 1995, vol. 195, p. 1.
Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., and Tsukerblat, B.S., Chem. Phys., 1995, vol. 195, p. 17.
Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., and Tsukerblat, B.S., Chem. Phys., 1995, vol. 195, p. 29.
Clemente-Juan, J.M., Palii, A., Tsukerblat, B., and Coronado, E., J. Comput. Chem., 2018, vol. 39, p. 1815.
Tsukerblat, B., Palii, A., Clemente-Juan, J.M., and Coronado, E., Int. Rev. Phys. Chem., 2020, vol. 9, no. 2, p. 217.
Lehmann, J., Gaita-Ariño, A., Coronado, E., and Loss, D., Nature Nanotech., 2007, vol. 2, no. 5, p. 312.
Clemente-Juan, J.M., Coronado, E., and Gaita-Ariño, A., Chem. Soc. Rev., 2012, vol. 41, no. 22, p. 7464.
Tsukerblat, B.S. and Belinskii, M.I., Magnetokhimiya i radiospektroskopiya obmennykh klasterov (Magnetochemistry and Radiospectroscopy of Exchange Clusters), Chisinau: Stiintsa, 1983.
Tsukerblat, B.S. Group Theory in Chemistry and Spectroscopy. A Simple Guide to Advanced Usage, Mineola, Dover, 2006.
Tsukerblat, B. S.; Belinskii, M.I.; Fainzilberg, V.E. Magnetochemistry and spectroscopy of transition metal exchange clusters, in Soviet Science Reviews B, Vol’pin, M., Ed., New York: Harwood, 1987, vol. 9, p. 337.
Mitrofanov, V.Ya., Nikiforov, A.E., and Cherepanov, V.I., Spektroskopiya obmenno-svyazannykh kompleksov v ionnykh kristallakh (Spectroscopy of Exchange-Coupled Complexes in Ionic Crystals), Moscow: Nauka, 1985.
Bencini, A. and Gatteschi, D., Electron Paramagnetic Resonance of Exchange Coupled Systems, Berlin: Springer, 1990.
Bencini, A. and Gatteschi, D., Introduction to Molecular Magnetism: From Transition Metals to Lanthanides, Weinheim: Wiley, 2015.
Kahn, O., Molecular Magnetism, New York: VCH, 1993.
Bǒca, R., Theoretical Foundations of Molecular Magnetism, Amsterdam: Elsevier, 1999.
Bǒca, R., Coord. Chem. Rev., 1998, vol. 173, p. 167.
Bǒca, R., Coord. Chem. Rev., 2004, vol. 248, p. 757.
Palii, A.V. and Tsukerblat, B., in Comprehensive Coordination Chemistry III: Metal–Metal Exchange Coupling, Amsterdam: Elsevier, 2020, p. 1.
Anderson, P.W., Phys. Rev., 1959, vol. 115, p. 2; Anderson, P.W., in Solid State Physics, Seitz, F. and Turnbull, D., Eds., New York: Academic, 1963, vol. 14, p. 99.
Goodenough, J.B. Magnetism and Chemical Bond, New York, Interscience, 1963.
Zener, C., Phys. Rev., 1951, vol. 82, no. 3, p. 403.
Anderson, P.W. and Hasegawa, H., Phys. Rev., 1955, vol. 100, p. 675.
Borrás-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., Georges, R., Palii, A.V., and Tsukerblat, B.S., J. Chem. Phys., 1996, vol. 105, p. 6892.
Clemente-Juan, J.M., Borras-Almenar, J.J., Coronado, E., Palii, A.V., and Tsukerblat, B.S., Inorg. Chem., 2009, vol. 48, no. 10, p. 4557.
Piepho, S.B., Krausz, E.R., and Schatz, P.N., J. Am. Chem. Soc., 1978, vol. 100, p. 2996.
Prassides, K. and Schatz, P.N., J. Phys. Chem., 1989, vol. 93, p. 83.
Wong, K.Y., Inorg. Chem., 1984, vol. 23, p. 1285.
Wong, K.Y. and Schatz, P.N., Prog. Inorg. Chem., 1981, vol. 28, p. 369.
Piepho, S.B., J. Am. Chem. Soc., 1990, vol. 112, p. 4197.
Piepho, S.B., J. Am. Chem. Soc., 1988, vol. 110, p. 6319.
Englman, R., The Jahn−Teller Effect in Molecules and Crystals, London: Wiley, 1972.
Bersuker, I.B. and Polinger, V.Z., Vibronic Interactions in Molecules and Crystals, Berlin: Springer, 1989.
Bersuker, I.B., The Jahn-Teller Effect, Cambridge: Cambridge Univ. Press, 2006.
Bersuker, I.B., Chem. Rev., 2013, vol. 113, p. 1351.
Palii, A., Rybakov, A., Aldoshin, S., and Tsukerblat, B., Phys. Chem. Chem. Phys., 2019, vol. 21, no. 30, p. 16751.
Ruderman, M.A. and Kittel, C., Phys. Rev., 1954, vol. 96, p. 99.
Kasuya, T., Prog. Theor. Phys., 1956, vol. 16, p. 45.
Yosida, K., Phys. Rev., 1957, vol. 106, no. 5, p. 893.
Palii, A., Aldoshin, S., Zilberg, S., and Tsukerblat, B., Phys. Chem. Chem. Phys., 2020, vol. 22, p. 25982.
Vonsovskii, S.V., Magnetism, New York: Wiley, 1974.
Irkhin, V. Yu. and Irkhin, Yu. P., Electronic Structure, Correlation Effects and Properties of d- and f-Metals and Their Compounds, Cambridge: Cambridge Univ. Press, 2007.
Funding
The authors acknowledge support from the Ministery of Education and Science of Russian Federation (Agreement no. 14.W03.31.0001).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Tsukerblat, B., Palii, A., Golosov, E. et al. Electric Field Controllable Magnetic Spin Communication in Partially Localized Mixed-Valence Molecules: A Tutorial Review. rev. and adv. in chem. 11, 145–165 (2021). https://doi.org/10.1134/S2079978021030043
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2079978021030043
Keywords:
- spin communication
- mixed-valence molecules
- intramolecular electron transfer
- exchange interaction
- double exchange
- vibronic coupling
- electric field effects
- polyoxometalates