Skip to main content
Log in

Electric Field Controllable Magnetic Spin Communication in Partially Localized Mixed-Valence Molecules: A Tutorial Review

  • REVIEW
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

This article is a short overview of the problem of controllable magnetic spin communication as an important ingredient of spintronics and molecular electronics. We discuss the problem of communication of the two localized spins mediated by the mobile electron which is shared between two non-magnetic sites coupled to the mobile spins. The model system which is assumed to mimic the key features of spin communication has a tetrameric linear structure with two terminal spins connected via the central mixed-valence (MV) dimeric unit. We propose a “toy” model which is expected to describe the exchange coupling between the localized spins mediated by the itinerant electron in complex systems such as reduced polyoxometalates hosting metal ions. The proposed model is parametric and intentionally simplified in order to give a qualitative insight on a wide class of the systems bearing in mind the main physical phenomena and at the same time avoiding analysis of their specific details. The model takes into account the following interactions peculiar for complex systems: electron transfer in the MV moiety, magnetic exchange between the localized spins and the delocalized electrons, coupling of delocalized electron with molecular vibrations and interaction of the system with an external electric field. The aim of the model is to describe in a parametric way a series of compounds with partially delocalized electrons with minimal number of the fitting parameters that reflect the main physical features of complex systems. To make the conclusions imaginative we discuss the limiting cases in details. In the case of relatively strong exchange coupling the combined action of the named interactions is shown to give rise to a specific kind of double exchange coupling termed here “external core” double exchange. In the opposite case of relatively strong electron transfer we arrive to an effective indirect exchange. A possibility to control the coupling between the localized spins by the external electric field acting on the mobile electron is discussed. It is demonstrated that the effect of the electric field on the strength of spin communication is amplified by the vibronic coupling so that this coupling decreases the value of the field required for a tangible control of the strength of spin communication. In the presentation of the problem we sought to emphasize the main concepts in a qualitative way cleared of mathematical details addressing the review, that we referrer as tutorial, to a wide audience of the readers: chemists, physicists and specialists in materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Herrmann, C., J. Phys. Chem. A, 2019, vol. 123, no. 47, p. 10205.

    Article  CAS  PubMed  Google Scholar 

  2. Launay, J.-P., Coord. Chem. Rev., 2013, vol. 257, p. 1544.

    Article  CAS  Google Scholar 

  3. Nitzan, A., J. Phys. Chem. A, 2001, vol. 105, no. 12, p. 2677.

    Article  CAS  Google Scholar 

  4. López, X., Carbó, J.J., Bo, C., and Poblet, J.M., Chem. Soc. Rev., 2012, vol. 41, no. 22, p. 7537.

    Article  CAS  PubMed  Google Scholar 

  5. Monakhov, K.Yu., Bensch, W., and Kögerler, P., Chem. Soc. Rev., 2015, vol. 44, no. 23, p. 8443.

    Article  CAS  PubMed  Google Scholar 

  6. Long, D.L., Tsunashima, R., and Cronin, L., Angew. Chem, Int. Ed., 2010, vol. 49, no. 10, p. 1736.

    Article  CAS  Google Scholar 

  7. Proust, A., Thouvenot, R., and Gouzerh, P., Chem. Commun., 2008, vol. 2008, p. 1837.

    Article  CAS  Google Scholar 

  8. Mizuno, N. and Yamaguchi, K., Chem. Rec., 2006, vol. 6, no. 1, p. 12.

    Article  CAS  PubMed  Google Scholar 

  9. Altirriba, J., Barbera, A., Del Zotto, H., Nadal, B., Piquer, S., Sánchez-Pla, A., Gagliardino, J.J., and Gomis, R., BMC Genomics, 2009, vol. 10, p. 406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aureliano, M. and Crans, D.C., J. Inorg. Biochem., 2009, vol. 103, p. 536.

    Article  CAS  PubMed  Google Scholar 

  11. Müller, A., Luban, M., Schröder, C., Modler, R., Kögerler, P., Axenovich, M., Schnack, J., Canfield, P., Bud’ko, S., and Harrison, N., ChemPhysChem., 2001, vol. 2, nos. 8–9, p. 517.

    Article  PubMed  Google Scholar 

  12. Müller, A., Peters, F., Pope, M.T., and Gatteschi, D., Chem. Rev., 1998, vol. 98, p. 239.

    Article  PubMed  Google Scholar 

  13. Barbour, A., Luttrell, R.D., Choi, J., Musfeldt, J.L., Zipse, D., Dalal, N.S., Boukhvalov, D.W., Dobrovitski, V.V., Katsnelson, M.I., Lichtenstein, A.I., Harmon, B.N., and Kögerler, P., Phys. Rev. B, 2006, vol. 74, p. 014411.

  14. Yin, Q., Tan, J.M., Besson, C., Geletii, Y.V., Musaev, D.G., Kuznetsov, A.E., Luo, Z., Hardcastle, K.I., and Hill, C.L., Science, 2010, vol. 328, p. 342.

    Article  CAS  PubMed  Google Scholar 

  15. Weinstock, I.A., Barbuzzi, E.M.G., Wemple, M.W., Cowan, J.J., Reiner, R.S., Sonnen, D.M., Heintz, R.A., Bond, J.S., and Hill, C.L., Nature, 2001, vol. 414, p. 191.

    Article  CAS  PubMed  Google Scholar 

  16. Geletii, Y.V., Botar, B., Kögerler, P., Hillesheim, D.A., Musaev, D.G., and Hill, C.L., Angew. Chem., Int. Ed., 2008, vol. 47, no. 21, p. 3896.

    Article  CAS  Google Scholar 

  17. Kamata, K., Yonehara, K., Nakagawa, Y., Uehara, K., and Mizuno, N., Nat. Chem., 2010, vol. 2, no. 6, p. 478.

    Article  CAS  PubMed  Google Scholar 

  18. Sadakane, M. and Steckhan, E., Chem. Rev., 1998, vol. 98, p. 219.

    Article  CAS  PubMed  Google Scholar 

  19. Kozhevnikov, I.V., Catalysis by Polyoxometalates, Chichester: Wiley, 2002.

    Google Scholar 

  20. Palii, A., Aldoshin, S., Tsukerblat, B, Clemente-Juan, J.M., Gaita-Ariño, A., and Coronado, E., Phys. Chem. Chem. Phys., 2017, vol. 19, no. 38, p. 26098.

    Article  CAS  PubMed  Google Scholar 

  21. Palii, A., Aldoshin, S., Tsukerblat, B, Clemente-Juan, J.M., and Coronado, E., J. Phys. Chem. C, 2019, vol. 123, p. 5746.

    Article  CAS  Google Scholar 

  22. Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., and Tsukerblat, B.S., Chem. Phys., 1995, vol. 195, p. 1.

    Article  CAS  Google Scholar 

  23. Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., and Tsukerblat, B.S., Chem. Phys., 1995, vol. 195, p. 17.

    Article  CAS  Google Scholar 

  24. Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., and Tsukerblat, B.S., Chem. Phys., 1995, vol. 195, p. 29.

    Article  CAS  Google Scholar 

  25. Clemente-Juan, J.M., Palii, A., Tsukerblat, B., and Coronado, E., J. Comput. Chem., 2018, vol. 39, p. 1815.

    Article  CAS  PubMed  Google Scholar 

  26. Tsukerblat, B., Palii, A., Clemente-Juan, J.M., and Coronado, E., Int. Rev. Phys. Chem., 2020, vol. 9, no. 2, p. 217.

    Article  Google Scholar 

  27. Lehmann, J., Gaita-Ariño, A., Coronado, E., and Loss, D., Nature Nanotech., 2007, vol. 2, no. 5, p. 312.

    Article  CAS  Google Scholar 

  28. Clemente-Juan, J.M., Coronado, E., and Gaita-Ariño, A., Chem. Soc. Rev., 2012, vol. 41, no. 22, p. 7464.

    Article  CAS  PubMed  Google Scholar 

  29. Tsukerblat, B.S. and Belinskii, M.I., Magnetokhimiya i radiospektroskopiya obmennykh klasterov (Magnetochemistry and Radiospectroscopy of Exchange Clusters), Chisinau: Stiintsa, 1983.

  30. Tsukerblat, B.S. Group Theory in Chemistry and Spectroscopy. A Simple Guide to Advanced Usage, Mineola, Dover, 2006.

    Google Scholar 

  31. Tsukerblat, B. S.; Belinskii, M.I.; Fainzilberg, V.E. Magnetochemistry and spectroscopy of transition metal exchange clusters, in Soviet Science Reviews B, Vol’pin, M., Ed., New York: Harwood, 1987, vol. 9, p. 337.

    Google Scholar 

  32. Mitrofanov, V.Ya., Nikiforov, A.E., and Cherepanov, V.I., Spektroskopiya obmenno-svyazannykh kompleksov v ionnykh kristallakh (Spectroscopy of Exchange-Coupled Complexes in Ionic Crystals), Moscow: Nauka, 1985.

  33. Bencini, A. and Gatteschi, D., Electron Paramagnetic Resonance of Exchange Coupled Systems, Berlin: Springer, 1990.

    Book  Google Scholar 

  34. Bencini, A. and Gatteschi, D., Introduction to Molecular Magnetism: From Transition Metals to Lanthanides, Weinheim: Wiley, 2015.

    Google Scholar 

  35. Kahn, O., Molecular Magnetism, New York: VCH, 1993.

    Google Scholar 

  36. Bǒca, R., Theoretical Foundations of Molecular Magnetism, Amsterdam: Elsevier, 1999.

    Google Scholar 

  37. Bǒca, R., Coord. Chem. Rev., 1998, vol. 173, p. 167.

    Article  Google Scholar 

  38. Bǒca, R., Coord. Chem. Rev., 2004, vol. 248, p. 757.

    Article  CAS  Google Scholar 

  39. Palii, A.V. and Tsukerblat, B., in Comprehensive Coordination Chemistry III: Metal–Metal Exchange Coupling, Amsterdam: Elsevier, 2020, p. 1.

    Google Scholar 

  40. Anderson, P.W., Phys. Rev., 1959, vol. 115, p. 2; Anderson, P.W., in Solid State Physics, Seitz, F. and Turnbull, D., Eds., New York: Academic, 1963, vol. 14, p. 99.

  41. Goodenough, J.B. Magnetism and Chemical Bond, New York, Interscience, 1963.

    Google Scholar 

  42. Zener, C., Phys. Rev., 1951, vol. 82, no. 3, p. 403.

    Article  CAS  Google Scholar 

  43. Anderson, P.W. and Hasegawa, H., Phys. Rev., 1955, vol. 100, p. 675.

    Article  CAS  Google Scholar 

  44. Borrás-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., Georges, R., Palii, A.V., and Tsukerblat, B.S., J. Chem. Phys., 1996, vol. 105, p. 6892.

    Article  Google Scholar 

  45. Clemente-Juan, J.M., Borras-Almenar, J.J., Coronado, E., Palii, A.V., and Tsukerblat, B.S., Inorg. Chem., 2009, vol. 48, no. 10, p. 4557.

    Article  CAS  PubMed  Google Scholar 

  46. Piepho, S.B., Krausz, E.R., and Schatz, P.N., J. Am. Chem. Soc., 1978, vol. 100, p. 2996.

    Article  CAS  Google Scholar 

  47. Prassides, K. and Schatz, P.N., J. Phys. Chem., 1989, vol. 93, p. 83.

    Article  CAS  Google Scholar 

  48. Wong, K.Y., Inorg. Chem., 1984, vol. 23, p. 1285.

    Article  CAS  Google Scholar 

  49. Wong, K.Y. and Schatz, P.N., Prog. Inorg. Chem., 1981, vol. 28, p. 369.

    CAS  Google Scholar 

  50. Piepho, S.B., J. Am. Chem. Soc., 1990, vol. 112, p. 4197.

    Article  CAS  Google Scholar 

  51. Piepho, S.B., J. Am. Chem. Soc., 1988, vol. 110, p. 6319.

    Article  CAS  Google Scholar 

  52. Englman, R., The Jahn−Teller Effect in Molecules and Crystals, London: Wiley, 1972.

    Google Scholar 

  53. Bersuker, I.B. and Polinger, V.Z., Vibronic Interactions in Molecules and Crystals, Berlin: Springer, 1989.

    Book  Google Scholar 

  54. Bersuker, I.B., The Jahn-Teller Effect, Cambridge: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  55. Bersuker, I.B., Chem. Rev., 2013, vol. 113, p. 1351.

    Article  CAS  PubMed  Google Scholar 

  56. Palii, A., Rybakov, A., Aldoshin, S., and Tsukerblat, B., Phys. Chem. Chem. Phys., 2019, vol. 21, no. 30, p. 16751.

    Article  CAS  PubMed  Google Scholar 

  57. Ruderman, M.A. and Kittel, C., Phys. Rev., 1954, vol. 96, p. 99.

    Article  CAS  Google Scholar 

  58. Kasuya, T., Prog. Theor. Phys., 1956, vol. 16, p. 45.

    Article  Google Scholar 

  59. Yosida, K., Phys. Rev., 1957, vol. 106, no. 5, p. 893.

    Article  Google Scholar 

  60. Palii, A., Aldoshin, S., Zilberg, S., and Tsukerblat, B., Phys. Chem. Chem. Phys., 2020, vol. 22, p. 25982.

    Article  CAS  PubMed  Google Scholar 

  61. Vonsovskii, S.V., Magnetism, New York: Wiley, 1974.

    Google Scholar 

  62. Irkhin, V. Yu. and Irkhin, Yu. P., Electronic Structure, Correlation Effects and Properties of d- and f-Metals and Their Compounds, Cambridge: Cambridge Univ. Press, 2007.

    Google Scholar 

Download references

Funding

The authors acknowledge support from the Ministery of Education and Science of Russian Federation (Agreement no. 14.W03.31.0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Tsukerblat or E. Golosov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukerblat, B., Palii, A., Golosov, E. et al. Electric Field Controllable Magnetic Spin Communication in Partially Localized Mixed-Valence Molecules: A Tutorial Review. rev. and adv. in chem. 11, 145–165 (2021). https://doi.org/10.1134/S2079978021030043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978021030043

Keywords:

Navigation