Skip to main content

The Battery of Analytical Techniques Necessary for the Effective Characterization of Solutions of Temperature-Sensitive Polymers

Abstract

This review aims to highlight the most effective ways of studying temperature-sensitive polymer solutions, which exhibit phase separation phenomena caused by variations in temperature. As a result of phase separation, temperature-sensitive polymer systems can form well-defined self-assembled nanostructures with a number of different practical application such as in drug and gene delivery, tissue engineering, etc. In order to establish the required properties for applications, a rigorous characterization of the phase separation phenomenon is essential. This review describes the application of different spectroscopic and calorimetric methods, including NMR, DLS, SAXS, IR, Raman spectroscopy and DSC, for this purpose.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Roy, D., Brooks, W.L.A., and Sumerlin, B.S., Chem. Soc. Rev., 2013, vol. 42, no. 17, p. 7214.

    CAS  Article  Google Scholar 

  2. 2

    Roy, D., Cambre, J.N., and Sumerlin, B.S., Prog. Polym. Sci., 2010, vol. 35, nos. 1–2, p. 278.

    CAS  Article  Google Scholar 

  3. 3

    Aseyev, V., Tenhu, H., and Winnik, F.M., Adv. Polym. Sci., 2011, vol. 242, p. 29.

    CAS  Article  Google Scholar 

  4. 4

    Ward, M.A. and Georgiou, T.K., Polymers, 2011, vol. 3, no. 3, p. 1215.

    CAS  Article  Google Scholar 

  5. 5

    Aseyev, V.O., Tenhu, H., and Winnik, F.M., Adv. Polym. Sci., 2006, vol. 196, p. 1.

    CAS  Article  Google Scholar 

  6. 6

    Filippov, S.K., Verbraeken, B., Konarev, P.V., Svergun, D.I., Angelov, B., Vishnevetskaya, N.S., Papadakis, C.M., Rogers, S., Radulescu, A., Courtin, T., Martins, J.C., Starovoytova, L., Hruby, M., Stepanek, P., Kravchenko, V.S., Potemkin, I.I., and Hoogenboom, R., J. Phys. Chem. Lett., 2017, vol. 8, no. 16, p. 3800.

    CAS  Article  Google Scholar 

  7. 7

    Bogomolova, A., Filippov, S.K., and Starovoytova, L., J. Phys. Chem. B, 2014, vol. 118, no. 18, p. 4940.

    CAS  Article  Google Scholar 

  8. 8

    Heskins, M. and Guillet, J.E., J. Macromol. Sci., Part A: Pure Appl.Chem., 1968, vol. 2, no. 8, p. 1441.

    CAS  Article  Google Scholar 

  9. 9

    Maeda, Y., Nakamura, T., and Ikeda, I., Macromolecules, 2002, vol. 35, no. 1, p. 217.

    CAS  Article  Google Scholar 

  10. 10

    Mano, J.F., Adv. Eng. Mater., 2008, vol. 10, no. 6, p. 515.

    CAS  Article  Google Scholar 

  11. 11

    Narang, P. and Venkatesu, P., Polymer, 2017, vol. 131, p. 224.

    CAS  Article  Google Scholar 

  12. 12

    Bhattacharjee, S., J. Controlled Release, 2016, vol. 235, p. 337.

    CAS  Article  Google Scholar 

  13. 13

    Hanyková, L., Labuta, J., and Spěváček, J., Polymer, 2006, vol. 47, no. 17, p. 6107.

    Article  CAS  Google Scholar 

  14. 14

    Velychkivska, N., Starovoytova, L., Březina, V., Hanyková, L., Hill, J.P., and Labuta, J., ACS Omega, 2018, vol. 3, no. 9, p. 11865.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  15. 15

    Labuta, J., Hill, J.P., Hanyková, L., Ishihara, S., and Ariga, K., J. Nanosci. Nanotechnol., 2010, vol. 10, no. 12, p. 8408.

    CAS  Article  Google Scholar 

  16. 16

    Velychkivska, N., Bogomolova, A., Filippov, S.K., Starovoytova, L., and Labuta, J., Colloid Polym. Sci., 2017, vol. 295, no. 8, p. 1419.

  17. 17

    Sturtevant, J.M., Annu. Rev. Biophys. Bioeng., 1974, vol. 3, p. 35.

    CAS  Article  Google Scholar 

  18. 18

    Sugar, I.P., J. Phys. Chem., 1987, vol. 91, no. 1, p. 95.

    CAS  Article  Google Scholar 

  19. 19

    Hanyková, L., Krakovský, I., Šestáková, E., Šťastná, J., and Labuta, J., Polymers, 2020, vol. 12, no. 2502, p. 1.

    Article  CAS  Google Scholar 

  20. 20

    Stankowski, S. and Gruenewald, B., Biophys. Chem., 1980, vol. 12, no. 2, p. 167.

    CAS  Article  Google Scholar 

  21. 21

    Carr, H.Y. and Purcell, E.M., Phys. Rev., 1954, vol. 94, no. 3, p. 630.

    CAS  Article  Google Scholar 

  22. 22

    Hahn, E.L., Phys. Rev., 1950, vol. 80, no. 4, p. 580.

    Article  Google Scholar 

  23. 23

    Meiboom, S. and Gill, D., Rev. Sci. Instrum., 1958, vol. 29, no. 8, p. 688.

    CAS  Article  Google Scholar 

  24. 24

    Spěváček, J. and Hanyková, L., Macromol. Symp., 2003, vol. 203, no. 1, p. 229.

    Article  CAS  Google Scholar 

  25. 25

    Spěváček, J., Hanyková, L., and Labuta, J., Macromolecules, 2011, vol. 44, no. 7, p. 2149.

    Article  CAS  Google Scholar 

  26. 26

    Spěváček, J. and Hanyková, L., Macromolecules, 2005, vol. 38, no. 22, p. 9187.

    Article  CAS  Google Scholar 

  27. 27

    Starovoytova, L. and Spěváček, J., Polymer, 2006, vol. 47, no. 21, p. 7329.

    CAS  Article  Google Scholar 

  28. 28

    Starovoytova, L., St’astna, J., Sturcova, A., Konefal, R., Dybal, J., Velychkivska, N., Radecki, M., and Hanykova, L., Polymers, 2015, vol. 7, no. 12, p. 2572.

    CAS  Article  Google Scholar 

  29. 29

    Hofmann, C. and Schönhoff, M., Colloid Polym. Sci., 2009, vol. 287, no. 12, p. 1369.

    CAS  Article  Google Scholar 

  30. 30

    Günther, H., Hemminger, W.F., and Flammersheim, H.-J., Differential Scanning Calorimetry, Berlin: Springer, 2003, 2nd ed.

    Google Scholar 

  31. 31

    Gedde, U.W., Polymer Physics, Dordrecht: Springer, 1999.

    Book  Google Scholar 

  32. 32

    Schäfer-Soenen, H., Moerkerke, R., Berghmans, H., Koningsveld, R., Dušek, K., and Šolc, K., Macromolecules, 1997, vol. 30, no. 3, p. 410.

    Article  Google Scholar 

  33. 33

    Van Durme, K., van Assche, G., and van Mele, B., Macromolecules, 2004, vol. 37, no. 25, p. 9596.

    CAS  Article  Google Scholar 

  34. 34

    Ding, Y., Ye, X., and Zhang, G., Macromolecules, 2005, vol. 38, no. 3, p. 904.

    CAS  Article  Google Scholar 

  35. 35

    Van Durme, K., Rahier, H., and van Mele, B., Macromolecules, 2005, vol. 38, no. 24, p. 10155.

    CAS  Article  Google Scholar 

  36. 36

    Cho, J.Y., Heuzey, M.C., Begin, A., and Carreau, P.J., Biomacromolecules, 2005, vol. 6, no. 6, p. 3267.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Hunter, A.C. and Moghimi, S.M., Drug Discovery Today, 2002, vol. 7, no. 19, p. 998.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Grinberg, V.Y., Burova, T.V., Grinberg, N.V., Tikhonov, V.E., Dubovik, A.S., Moskalets, A.P., and Khokhlov, A.R., Carbohydr. Polym., 2020, vol. 229, 115558.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Okada, Y. and Tanaka, F., Macromolecules, 2005, vol. 38, no. 10, p. 4465.

    CAS  Article  Google Scholar 

  40. 40

    Meeussen, F., Nies, E., Berghmans, H., Verbrugghe, S., Goethals, E., and du Prez, F.E., Polymer, 2000, vol. 41, no. 24, p. 8597.

    CAS  Article  Google Scholar 

  41. 41

    Van Durme, K., Verbrugghe, S., du Prez, F.E., and van Mele, B., Macromolecules, 2004, vol. 37, no. 3, p. 1054.

    CAS  Article  Google Scholar 

  42. 42

    Afroze, F., Nies, E., and Berghmans, H., J. Mol. Struct., 2000, vol. 554, no. 1, p. 55.

    CAS  Article  Google Scholar 

  43. 43

    Moerkerke, R., Meeussen, F., Koningsveld, R., and Berghmans, H., Macromolecules, 1998, vol. 31, no. 7, p. 2223.

    CAS  Article  Google Scholar 

  44. 44

    Larkin, P.J., Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, New York: Elsevier, 2018.

    Google Scholar 

  45. 45

    Kauffmann, T.H., Kokanyan, N., and Fontana, M.D., J. Raman Spectrosc., 2019, vol. 50, no. 3, p. 418.

    CAS  Article  Google Scholar 

  46. 46

    Colthup, N.B., Daly, L.H., and Wiberley, S.E., Introduction to Infrared and Raman Spectroscopy, New York: Elsevier, 1990, 3rd ed.

    Google Scholar 

  47. 47

    Maeda, Y., Langmuir, 2001, vol. 17, no. 5, p. 1737.

    CAS  Article  Google Scholar 

  48. 48

    Sun, B., Lin, Y., Wu, P., and Siesler, H.W., Macromolecules, 2008, vol. 41, no. 4, p. 1512.

    CAS  Article  Google Scholar 

  49. 49

    Maeda, Y., Yamamoto, H., and Ikeda, I., Langmuir, 2004, vol. 20, no. 17, p. 7339.

    CAS  Article  Google Scholar 

  50. 50

    Pica, A. and Graziano, G., Phys. Chem. Chem. Phys., 2016, vol. 18, no. 36, p. 25601.

    CAS  Article  Google Scholar 

  51. 51

    Maeda, Y., Yamamoto, H., and Ikeda, I., Macromol. Rapid Commun., 2004, vol. 25, no. 14, p. 720.

    CAS  Article  Google Scholar 

  52. 52

    Yamauchi, H. and Maeda, Y., J. Phys. Chem. B, 2007, vol. 111, no. 45, p. 12964.

    CAS  Article  Google Scholar 

  53. 53

    Fujishige, S., Kubota, K., and Ando, I., J. Phys. Chem., 1989, vol. 93, no. 8, p. 3311.

    CAS  Article  Google Scholar 

  54. 54

    Tanaka, F., Koga, T., Kojima, H., and Winnik, F.M., Chin. J. Polym. Sci., 2011, vol. 29, no. 1, p. 13.

    CAS  Article  Google Scholar 

  55. 55

    Zhang, G.Wu., J. Am. Chem. Soc., 2001, vol. 123, no. 7, p. 1376.

    CAS  Article  Google Scholar 

  56. 56

    Aseyev, V., Hietala, S., Laukkanen, A., Nuopponen, M., Confortini, O., du Prez, F.E., and Tenhu, H., Polymer, 2005, vol. 46, no. 18, p. 7118.

    CAS  Article  Google Scholar 

  57. 57

    Filippov, S.K., Bogomolova, A., Kaberov, L., Velychkivska, N., Starovoytova, L., Cernochova, Z., Rogers, S.E., Lau, W.M., Khutoryanskiy, V.V., and Cook, M.T., Langmuir, 2016, vol. 32, no. 21, p. 5314.

    CAS  Article  Google Scholar 

  58. 58

    Schnablegger, H. and Singh, Y., A Practical Guide to SAXS: Getting Acquainted with the Principles, Graz: Anton Paar, 2011.

    Google Scholar 

  59. 59

    Kohlbrecher, J., User Guide for the SASfit Software Package SASfit: A Program for Fitting Simple Structural Models to Small Angle Scattering Data, Villigen: Paul Scherrer Inst., 2017.

    Google Scholar 

  60. 60

    Spěváček, J., Dybal, J., Starovoytova, L., Zhigunov, A., and Sedláková, Z., Soft Matter, 2012, vol. 8, no. 12, p. 6110.

    Article  CAS  Google Scholar 

  61. 61

    Lyngsø, J., Al-Manasir, N., Behrens, M. A., Zhu, K., Kjøniksen, A.-L., Nyström, B., and Pedersen, J.S., Macromolecules, 2015, vol. 48, no. 7, p. 2235.

    Article  CAS  Google Scholar 

  62. 62

    Janisova, L., Gruzinov, A., Zaborova, O.V., Velychkivska, N., Vaněk, O., Chytil, P., Etrych, T., Janoušková, O., Zhang, X., Blanchet, C., Papadakis, C.M., Svergun, D.I., and Filippov, S.K., Pharmaceutics, 2020, vol. 12, no. 106, p. 1.

    Article  CAS  Google Scholar 

  63. 63

    Bogomolova, A., Filippov, S.K., Starovoytova, L., Angelov, B., Konarev, P., Sedlacek, O., Hruby, M., and Stepanek, P., J. Phys. Chem. B, 2014, vol. 118, no. 18, p. 4940.

    CAS  Article  Google Scholar 

  64. 64

    Kitazawa, Y., Ueki, T., McIntosh, L.D., Tamura, S., Niitsuma, K., Imaizumi, S., Lodge, T.P., and Watanabe, M., Macromolecules, 2016, vol. 49, no. 4, p. 1414.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by World Premier International Research Center Initiative (WPI Initiative) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nadiia Velychkivska or Larisa Janisova.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Velychkivska, N., Janisova, L., Hill, J.P. et al. The Battery of Analytical Techniques Necessary for the Effective Characterization of Solutions of Temperature-Sensitive Polymers. rev. and adv. in chem. 11, 100–111 (2021). https://doi.org/10.1134/S2079978021010076

Download citation

Keywords:

  • temperature-sensitive polymer solutions
  • phase separation
  • spectroscopic techniques