Skip to main content

Fast Scanning Calorimetry of Organic Materials from Low Molecular Mass Materials to Polymers

Abstract

The past three decades have witnessed the rapid development of fast scanning calorimetry (FSC), a novel calorimetric technique that employs micromachined sensors. The key advances of this technique are the ultrahigh scanning rate, which can be as high as 106 K s–1, and the ultrahigh sensitivity, with a heat capacity resolution typically better than 1 nJ K–1. Nanocalorimetry has attracted much attention in materials science, where it is applied to perform quantitative analysis of rapid phase transitions, particularly on fast cooling. Another emerging area of application of FSC is physical chemistry, with a focus on the thermophysical properties of thermally labile compounds. Quantities like fusion temperature, fusion enthalpy, sublimation, and vaporization pressures and enthalpies of such molecules became available. This paper shortly reviews the development of FSC and summarizes its applications to various materials ranging from polymers (including proteins) to pharmaceuticals. Several of them are based on results from the laboratory of fast scanning calorimetry at Kazan Federal University, where applications of FSC, especially for biopolymers and low-molecular-mass organic compounds, were developed. Furthermore, FSC, coupled with structural characterization techniques, such as polarized optical (POM) and atomic force (AFM) microscopy, as well as infrared spectroscopy (IR), is presented. Finally, current challenges and future outlooks are discussed. Given the unique attributes of the technique, nanocalorimetry is expected to attract increasing attention, especially concerning the characterization of fast phase transitions and evaluation of thermally labile compounds.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.
Fig. 46.
Fig. 47.
Fig. 48.
Fig. 49.
Fig. 50.
Fig. 51.

Notes

  1. 1.

    Adapted from [144], with permission from Elsevier 2018.

  2. 2.

    Adapted from [145], with permission from Elsevier 2019.

  3. 3.

    Adapted from [149], with permission from Elsevier 2020.

  4. 4.

    Adapted from and [147], with permission from the PCCP Owner Societies 2019.

  5. 5.

    Adapted from [101], with permission from the Royal Society of Chemistry 2019.

  6. 6.

    Adapted from [200], with permission from Elsevier 2019.

  7. 7.

    Adapted from [203], with permission from Elsevier 2020.

  8. 8.

    Adapted from [138], with permission from Elsevier 2020.

  9. 9.

    Adapted from [168], with permission from the PCCP Owner Societies 2020.

  10. 10.

    Adapted from [252].

  11. 11.

    Adapted from [264], with permission from Elsevier 2020.

  12. 12.

    Adapted from [286].

REFERENCES

  1. 1

    Schick, C. and Mathot, V., Fast Scanning Calorimetry, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-31329-0H

  2. 2

    Denlinger, D.W., Abarra, E.N., Allen, K., Rooney, P.W., Messer, M.T., Watson, S.K., and Hellman, F., Rev. Sci. Instrum., 1994, vol. 65, no. 4, p. 946. https://doi.org/10.1063/1.1144925

    CAS  Article  Google Scholar 

  3. 3

    Lai, S.L., Ramanath, G., Allen, L.H., Infante, P., and Ma, Z., Appl. Phys. Lett., 1995, vol. 67, no. 9, p. 1229. https://doi.org/10.1063/1.115016

    CAS  Article  Google Scholar 

  4. 4

    Mathot, V.B.F., Calorimetry and Thermal Analysis of Polymers, Munich: Hanser, 1994. https://doi.org/10.1002/pi.1995.210370112

  5. 5

    Höhne, G.W.H., Hemminger, W., and Flammersheim, H.-J., Differential Scanning Calorimetry, Berlin: Springer, p. 2003.

    Book  Google Scholar 

  6. 6

    Wunderlich, B., Thermal Analysis of Polymeric Materials, Berlin: Springer, 2005.

    Google Scholar 

  7. 7

    Kaschnitz, E., McClure, J.L., and Cezairliyan, A., Int. J. Thermophys., 1994, vol. 15, no. 4, p. 757.

    CAS  Google Scholar 

  8. 8

    Schmidt, M., Kusche, R., Kronmuller, W., Vonissendorff, B., and Haberland, H., Phys. Rev. Lett., 1997, vol. 79, no. 1, p. 99. https://doi.org/10.1103/PhysRevLett.79.99

    CAS  Article  Google Scholar 

  9. 9

    Hellmuth, E. and Wunderlich, B., J. Appl. Phys., 1965, vol. 36, no. 10, p. 3039. https://doi.org/10.1063/1.1702924

    CAS  Article  Google Scholar 

  10. 10

    Hager, N.E., Rev. Sci. Instrum., 1972, vol. 43, no. 8, p. 1116. https://doi.org/10.1063/1.1685859

    CAS  Article  Google Scholar 

  11. 11

    Brucato, V., Piccarolo, S., and Titomanlio, G., Macromol. Symp., 1993, vol. 68, p. 245. https://doi.org/10.1002/masy.19930680119

    CAS  Article  Google Scholar 

  12. 12

    Mathot, V.B.F., Thermochim. Acta, 2000, vol. 355, p. 1. https://doi.org/10.1016/S0040-6031(00)00450-0

    CAS  Article  Google Scholar 

  13. 13

    Pijpers, M.F.J., Mathot, V.B.F., Goderis, B., Scherrenberg, R., and van der Vegte, E., Macromolecules, 2002, vol. 35, no. 9, p. 3601. https://doi.org/10.1021/ma011122u

    CAS  Article  Google Scholar 

  14. 14

    Cavallo, D., Azzurri, F., Floris, R., Alfonso, G.C., Balzano, L., and Peters, G.W., Macromolecules, 2010, vol. 43, no. 6, p. 2890. https://doi.org/10.1021/ma902865e

    CAS  Article  Google Scholar 

  15. 15

    Menges, G., Wübken, G., and Horn, B., Colloid Polym. Sci., 1976, vol. 254, no. 3, p. 267. https://doi.org/10.1007/BF01384025

    CAS  Article  Google Scholar 

  16. 16

    Russell, D. and Beaumont, P.R., J. Mater. Sci., 1980, vol. 15, no. 1, p. 197. https://doi.org/10.1007/BF00552445

    CAS  Article  Google Scholar 

  17. 17

    Menges, G. and Winkel, E., Kunststoffe, 1982, vol. 72, p. 91.

    CAS  Google Scholar 

  18. 18

    Rhoades, A.M., Williams, J.L., Wonderling, N., Androsch, R., and Guo, J., J. Therm. Anal. Calorim., 2017, vol. 127, no. 1, p. 939. https://doi.org/10.1007/s10973-016-5793-z

    CAS  Article  Google Scholar 

  19. 19

    Jariyavidyanont, K., Williams, J.L., Rhoades, A.M., Kühnert, I., Focke, W., and Androsch, R., Polym. Eng. Sci., 2017, vol. 58, no. 7, p. 1053. https://doi.org/10.1002/pen.24665

    CAS  Article  Google Scholar 

  20. 20

    Poel, G. and Mathot, V.B.F., Thermochim. Acta, 2007, vol. 461, nos. 1–2, p. 107. https://doi.org/10.1016/j.tca.2007.04.009

    CAS  Article  Google Scholar 

  21. 21

    Mathot, V.B.F., Poel, G.V., and Pijpers, T.F.J., in Handbook of Thermal Analysis and Calorimetry, Brown, M.E. and Gallagher, P.K., Eds., Amsterdam: Elsevier, 2008, p. 269. https://doi.org/10.1016/S1573-4374(08)80011-8

  22. 22

    Danley, R.L., Caulfield, P.A., and Aubuchon, S.R., Am. Lab., 2008, p. 9.

  23. 23

    Adamovsky, S.A., Minakov, A.A., and Schick, C., Thermochim. Acta, 2003, vol. 403, no. 1, p. 55. https://doi.org/10.1016/S0040-6031(03)00182-5

    CAS  Article  Google Scholar 

  24. 24

    Adamovsky, S. and Schick, C., Thermochim. Acta, 2004, vol. 415, p. 1. https://doi.org/10.1016/j.tca.2003.07.015

    CAS  Article  Google Scholar 

  25. 25

    Minakov, A.A., Adamovsky, S.A., and Schick, C., Thermochim. Acta, 2005, vol. 432, no. 2, p. 177. https://doi.org/10.1016/j.tca.2005.01.073

    CAS  Article  Google Scholar 

  26. 26

    Minakov, A.A. and Schick, C., Rev. Sci. Instrum., 2007, vol. 78, no. 7, 073902. https://doi.org/10.1063/1.2751411

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Zhuravlev, E. and Schick, C., Thermochim. Acta, 2010, vol. 505, nos. 1–2, p. 1. https://doi.org/10.1016/j.tca.2010.03.019

    CAS  Article  Google Scholar 

  28. 28

    Detailed technical information about FSC chips are available by Xensor Integration®, 2017. http://www.xensor.nl.

  29. 29

    Davies, H.A., in Amorphous Metallic Alloys, Luborsky, F.E., Ed., Oxford: Butterworth-Heinemann, 1983, p. 8. https://doi.org/10.1016/B978-0-408-11030-3.50007-8

  30. 30

    Bosq, N., Guigo, N., Zhuravlev, E., and Sbirrazzuoli, N., J. Phys. Chem. B, 2013, vol. 117, no. 12, p. 3407. https://doi.org/10.1021/jp311196g

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Zhuravlev, E., Madhavi, V., Lustiger, A., Androsch, R., and Schick, C., ACS Macro Lett., 2016, vol. 5, p. 365. https://doi.org/10.1021/acsmacrolett.5b00889

    CAS  Article  Google Scholar 

  32. 32

    Mathot, V., Pyda, M., and Pijpers, T., Vanden Poel, G., van de Kerkhof, E., van Herwaarden, S., van Herwaarden, F., and Leenaers, A., Thermochim. Acta, 2011, vol. 522, nos. 1–2, p. 36. https://doi.org/10.1016/j.tca.2011.02.031

    CAS  Article  Google Scholar 

  33. 33

    Boersma, S.L., J. Am. Ceram. Soc., 1955, vol. 38, no. 8, p. 281. https://doi.org/10.1111/j.1151-2916.1955.tb14945.x

    CAS  Article  Google Scholar 

  34. 34

    Watson, E.S., O’Neill, M.O., Justin, J., and Brenner, N., Anal. Chem., 1964, vol. 36, no. 7, p. 1233. https://doi.org/10.1021/ac60213a019

    CAS  Article  Google Scholar 

  35. 35

    Kolesov, I.S., Androsch, R., and Radusch, H.J., J. Therm. Anal. Calorim., 2004, vol. 78, p. 885. https://doi.org/10.1007/s10973-005-0455-0

    CAS  Article  Google Scholar 

  36. 36

    Androsch, R. and Wunderlich, B., in Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications, Matyjaszewski, K., Gnanou, Y., and Leibler, L., Eds., Hoboken: Wiley, 2007.https://doi.org/10.1002/9783527631421.ch44

  37. 37

    Schick, C., Calorimetry, in Polymer Science: A Comprehensive Reference, Matyjaszewski, K. and Möller, M., Eds., Amsterdam: Elsevier, 2012, vo. 2, p. 793. https://doi.org/10.1016/B978-0-444-53349-4.00056-X

  38. 38

    Poel, G.V. and Mathot, V.B.F., Thermochim. Acta, 2006, vol. 446, nos. 1–2, p. 41. https://doi.org/10.1016/j.tca.2006.02.022

    CAS  Article  Google Scholar 

  39. 39

    Ford, J.L. and Mann, T.E., Adv. Drug Delivery Rev., 2012, vol. 64, no. 5, p. 422. https://doi.org/10.1016/j.addr.2011.12.001

    CAS  Article  Google Scholar 

  40. 40

    Efremov, M.Y., Schiettekatte, F., Zhang, M., Olson, E.A., Kwan, A.T., Berry, R.S., and Allen, L.H., Phys. Rev. Lett., 2000, vol. 85, no. 17, p. 3560. https://doi.org/10.1103/PhysRevLett.85.3560

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Olson, E.A., Efremov, M.Y., Zhang, M., Zhang, Z.S., and Allen, L.H., J. Microelectromech. Syst., 2003, vol. 12, no. 3, p. 355. https://doi.org/10.1109/JMEMS.2003.811755

    Article  Google Scholar 

  42. 42

    Kwan, A.T., Efremov, M.Y., Olson, E.A., Schiettekatte, F., Zhang, M., Geil, P.H., and Allen, L.H., J. Polym. Sci., Part B: Polym. Phys., 2001, vol. 39, no. 11, p. 1237. http://dx.doi.rg/10.1002/polb.1097

    CAS  Article  Google Scholar 

  43. 43

    Efremov, M.Y., Warren, J.T., Olson, E.A., Zhang, M., Kwan, A.T., and Allen, L.H., Macromolecules, 2002, vol. 35, no. 5, p. 1481. https://doi.org/10.1021/ma0116811

    CAS  Article  Google Scholar 

  44. 44

    Zhang, M., Efremov, M.Y., Olson, E.A., Zhang, Z.S., and Allen, L.H., Appl. Phys. Lett., 2002, vol. 81, no. 20, p. 3801. https://doi.org/10.1063/1.1520714

    CAS  Article  Google Scholar 

  45. 45

    Efremov, M.Y., Olson, E.A., Zhang, M., Zhang, Z., and Allen, L.H., Phys. Rev. Lett., 2003, vol. 91, no. 8, 085703. https://doi.org/10.1103/PhysRevLett.91.085703

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Efremov, M.Y., Olson, E.A., Zhang, M., Schiettekatte, F., Zhang, Z., and Allen, L.H., Rev. Sci. Instrum., 2004, vol. 75, no. 1, p. 179. https://doi.org/10.1063/1.1633000

    CAS  Article  Google Scholar 

  47. 47

    Zhang, Z.S., Wilson, O.M., Efremov, M.Y., Olson, E.A., Braun, P.V., Senaratne, W., Ober, C.K., Zhang, M., and Allen, L.H., Appl. Phys. Lett., 2004, vol. 84, no. 25, p. 5198. https://doi.org/10.1063/1.1764938

    CAS  Article  Google Scholar 

  48. 48

    Lai, S.L., Ramanath, G., Allen, L.H., and Infante, P., Appl. Phys. Lett., 1997, vol. 70, no. 1, p. 43. https://doi.org/10.1063/1.119299

    CAS  Article  Google Scholar 

  49. 49

    Lopeandía, A.F., Leon-Gutierrez, E., Garcia, G., Pi, F., Bernardi, A., Goñi, A.R., Alonso, M.I., and Rodríguez-Viejo, J., Mater. Sci. Semicond. Process., 2006, vol. 9, p. 806. https://doi.org/10.1016/j.mssp.2006.08.078

    CAS  Article  Google Scholar 

  50. 50

    Leon-Gutierrez, E., Garcia, G., Lopeandia, A.F., Fraxedas, J., Clavaguera-Mora, M.T., and Rodríguez-Viejo, J., J. Chem. Phys., 2008, vol. 129, no. 18, 181101. https://doi.org/10.1063/1.3009766

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Bhattacharya, D., Payne, C.N., and Sadtchenko, V., J. Phys. Chem. A, 2011, vol. 115, no. 23, p. 5965. https://doi.org/10.1021/jp110372t

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Swaminathan, P., LaVan, D.A., and Weihs, T.P., J. Appl. Phys., 2011, vol. 110, no. 11, 113519. https://doi.org/10.1063/1.3668128

    CAS  Article  Google Scholar 

  53. 53

    Yi, F., Kim, I.K., Li, S., and Lavan, D.A., J. Pharm. Sci., 2014, vol. 103, no. 11, p. 3442. https://doi.org/10.1002/jps.24187

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Grapes, M.D., LaGrange, T., Friedman, L.H., Reed, B.W., Campbell, G.H., Weihs, T.P., and LaVan, D.A., Rev. Sci. Instrum., 2014, vol. 85, no. 8, 084902. https://doi.org/10.1063/1.4892537

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Yi, F., DeLisio, J.B., Zachariah, M.R., and LaVan, D.A., Anal. Chem., 2015, vol. 87, no. 19, p. 9740. https://doi.org/10.1021/acs.analchem.5b01872

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Yi, F. and LaVan, D.A., Appl. Phys. Rev., 2019, vol. 6, no. 3, 031302. https://doi.org/10.1063/1.5098297

    CAS  Article  Google Scholar 

  57. 57

    Minakov, A., Morikawa, J., Zhuravlev, E., Ryu, M., Herwaarden, A.W., and Schick, C., J. Appl. Phys., 2019, vol. 125, no. 5, 054501. https://doi.org/10.1063/1.5066384

    CAS  Article  Google Scholar 

  58. 58

    Merzlyakov, M., Integrated circuit thermopile as a new type of temperature modulated calorimeter, Lecture, ICCT Rostock, July 2002.

  59. 59

    Merzlyakov, M., Thermochim. Acta, 2003, vol. 403, no. 1, p. 65. https://doi.org/10.1016/S0040-6031(03)00083-2

    CAS  Article  Google Scholar 

  60. 60

    Lopeandía, A.F., Cerdó, L.I., Clavaguera-Mora, M.T., Arana, L.R., Jensen, K.F., Muñoz, F.J., and Rodríguez-Viejo, J., Rev. Sci. Instrum., 2005, vol. 76, 065104. https://doi.org/10.1063/1.1921567

    CAS  Article  Google Scholar 

  61. 61

    Zhuravlev, E. and Schick, C., Thermochim. Acta, 2010, vol. 505, nos. 1–2, p. 14. https://doi.org/10.1016/j.tca.2010.03.020

    CAS  Article  Google Scholar 

  62. 62

    Lopeandía, A.F., Valenzuela, J., and Rodríguez-Viejo, J., Sens. Actuators, A, 2008, vol. 143, no. 2, p. 256. https://doi.org/10.1016/j.sna.2007.11.006

    CAS  Article  Google Scholar 

  63. 63

    Ahrenberg, M., Brinckmann, M., Schmelzer, J.W.P., Beck, M., Schmidt, C., Keßler, O.H., Kragl, U., Verevkin, S.P., and Schick, C., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 7, p. 2971. https://doi.org/10.1039/c3cp54325k

    CAS  Article  PubMed  Google Scholar 

  64. 64

    Nakabeppu, O. and Deno, K., Thermochim. Acta, 2016, vol. 637, p. 1. https://doi.org/10.1016/j.tca.2016.05.005

    CAS  Article  Google Scholar 

  65. 65

    Melnikov, A.P., Rosenthal, M., Burghammer, M., Anokhin, D.V., and Ivanov, D.A., Nanotechnol. Russ., 2016, vol. 11, no. 5, p. 305. https://doi.org/10.1134/S1995078016030113

    CAS  Article  Google Scholar 

  66. 66

    van Herwaarden, A.W., Thermochim. Acta, 2005, vol. 432, no. 2, p. 192. https://doi.org/10.1016/j.tca.2005.04.027

    CAS  Article  Google Scholar 

  67. 67

    Schick, C. and Androsch, R., in Handbook of Thermal Analysis and Calorimetry, Vyazovkin, S., Koga, N., and Schick, C., Eds., Amsterdam: Elsevier, 2018, vol. 6, p. 47. https://doi.org/10.1016/B978-0-444-64062-8.00018-8

  68. 68

    Gao, Y.L., Zhuravlev, E., Zou, C.D., Yang, B., Zhai, Q.J., and Schick, C., Thermochim. Acta, 2009, vol. 482, p. 1. https://doi.org/10.1016/j.tca.2008.10.002

    CAS  Article  Google Scholar 

  69. 69

    Ahrenberg, M., Ostonen, A., Schmelzer, J.W.P., Beck, M., Schmidt, C., Keßler, O., Kragl, U., Verevkin, S.P., and Schick, C., in Fast Scanning Calorimetry, Schick, C. and Mathot, V., Eds., Cham: Springer, 2016, p. 259. https://doi.org/10.1007/978-3-319-31329-0_8

  70. 70

    Minakov, A., Morikawa, J., Hashimoto, T., Huth, H., and Schick, C., Meas. Sci. Technol., 2006, vol. 17, p. 199. https://doi.org/10.1088/0957-0233/17/1/031

    CAS  Article  Google Scholar 

  71. 71

    Minakov, A.A. and Schick, C., Thermochim. Acta, 2015, vol. 603, p. 205. https://doi.org/10.1016/j.tca.2014.05.030

    CAS  Article  Google Scholar 

  72. 72

    Minakov, A.A. and Schick, C., Thermochim. Acta, 2016, vol. 640, p. 42. https://doi.org/10.1016/j.tca.2016.07.023

    CAS  Article  Google Scholar 

  73. 73

    Lopeandía, A.F., Rodríguez-Viejo, J., Chacon, M., Clavaguera-Mora, M.T., and Muñoz, F.J., J. Micromech. Microeng., 2006, vol. 16, p. 965. https://doi.org/10.1088/0960-1317/16/5/013

    CAS  Article  Google Scholar 

  74. 74

    Swaminathan, P., Burke, B.G., Holness, A.E., Wilthan, B., Hanssen, L., Weihs, T.P., and LaVan, D.A., Thermochim. Acta, 2011, vol. 522, nos. 1–2, p. 60. https://doi.org/10.1016/j.tca.2011.03.006

    CAS  Article  Google Scholar 

  75. 75

    Poel, G.V., Sargsyan, A., Mathot, V., Assche, G.V., Wurm, A., Schick, C., Krumme, A., and Zhou, D., Recommendation for Temperature Calibration of Fast Scanning Calorimeters (FsCs) for Sample Mass and Scan Rate, Berlin: Beuth, 2011.

    Google Scholar 

  76. 76

    Toda, A. and Konishi, M., Thermochim. Acta, 2014, vol. 589, p. 262. https://doi.org/10.1016/j.tca.2014.05.038

    CAS  Article  Google Scholar 

  77. 77

    Zhuravlev, E. and Schick, C., in Fast Scanning Calorimetry, Schick, C. and Mathot, V., Eds., Cham: Springer, 2016, p. 81. https://doi.org/10.1007/978-3-319-31329-0_2

  78. 78

    Yi, F., Friedman, L.H., Chen, R., and LaVan, D.A., J. Therm. Anal. Calorim., 2019, vol. 138, p. 3367. https://doi.org/10.1007/s10973-019-08139-2

    CAS  Article  Google Scholar 

  79. 79

    Yi, F. and Grapes, M.D., L. D., J. Res. Natl. Inst. Stand. Technol., 2019, vol. 124, 124021. https://doi.org/10.6028/jres.124.021

    CAS  Article  Google Scholar 

  80. 80

    Jariyavidyanont, K., Abdelaziz, A., Androsch, R., and Schick, C., Thermochim. Acta, 2019, vol. 674, p. 95. https://doi.org/10.1016/j.tca.2019.02.016

    CAS  Article  Google Scholar 

  81. 81

    Efremov, M.Y., Olson, E.A., Zhang, M., Lai, S.L., Schiettekatte, F., Zhang, Z.S., and Allen, L.H., Thermochim. Acta, 2004, vol. 412, no. 7, p. 13. https://doi.org/10.1016/j.tca.2003.08.019

    CAS  Article  Google Scholar 

  82. 82

    Cebe, P., Partlow, B.P., Kaplan, D.L., Wurm, A., Zhuravlev, E., and Schick, C., Thermochim. Acta, 2015, vol. 615, p. 8. https://doi.org/10.1016/j.tca.2015.07.009

    CAS  Article  Google Scholar 

  83. 83

    Cebe, P., Partlow, B.P., Kaplan, D.L., Wurm, A., Zhuravlev, E., and Schick, C., in Fast Scanning Calorimetry, Schick, C. and Mathot, V., Eds., Cham: Springer, 2016, p. 187. https://doi.org/10.1007/978-3-319-31329-0_5

  84. 84

    Thomas, D., Zhuravlev, E., Wurm, A., Schick, C., and Cebe, P., Polymer, 2018, vol. 137, p. 145. https://doi.org/10.1016/j.polymer.2018.01.004

    CAS  Article  Google Scholar 

  85. 85

    Gao, Y., Zhao, B., Vlassak, J.J., and Schick, C., Prog. Mater. Sci., 2019, vol. 104, p. 53. https://doi.org/10.1016/j.pmatsci.2019.04.001

    CAS  Article  Google Scholar 

  86. 86

    Quick, C.R., Schawe, J.E.K., Uggowitzer, P.J., and Pogatscher, S., Thermochim. Acta, 2019, vol. 677, p. 12. https://doi.org/10.1016/j.tca.2019.03.021

    CAS  Article  Google Scholar 

  87. 87

    Franke, E., LaVan, D.A., and Volkert, C.A., Thermochim. Acta, 2018, vol. 668, p. 116. https://doi.org/10.1016/j.tca.2018.08.006

    CAS  Article  Google Scholar 

  88. 88

    Yi, F. and LaVan, D.A., Thermochim. Acta, 2013, vol. 569, p. 1. https://doi.org/10.1016/j.tca.2013.06.015

    CAS  Article  Google Scholar 

  89. 89

    Schawe, J.E.K., Thermochim. Acta, 2016, vol. 635, p. 34. https://doi.org/10.1016/j.tca.2016.04.021

    CAS  Article  Google Scholar 

  90. 90

    Cebe, P., Partlow, B.P., Kaplan, D.L., Wurm, A., Zhuravlev, E., and Schick, C., Acta Biomater., 2017, vol. 55, p. 323. https://doi.org/10.1016/j.actbio.2017.04.001

    CAS  Article  PubMed  Google Scholar 

  91. 91

    Zhuravlev, E., Schmelzer, J.W.P., Abyzov, A.S., Fokin, V.M., Androsch, R., and Schick, C., Cryst. Growth Des., 2015, vol. 15, no. 2, p. 786. https://doi.org/10.1021/cg501600s

    CAS  Article  Google Scholar 

  92. 92

    Yang, B., Abyzov, A.S., Zhuravlev, E., Gao, Y., Schmelzer, J.W.P., and Schick, C., J. Chem. Phys., 2013, vol. 138, no. 5, 054501. https://doi.org/10.1063/1.4789447

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Wurm, A., Herrmann, A., Cornelius, M., Zhuravlev, E., Pospiech, D., Nicula, R., and Schick, C., Macromol. Mater. Eng., 2015, vol. 300, no. 6, p. 637. https://doi.org/10.1002/mame.201400405

    CAS  Article  Google Scholar 

  94. 94

    Zohrabyan, D., Differential fast-scanning calorimetry and differential reheating as direct and indirect methods to study the critical cooling rates of Al–Zn–Mg–Cu alloys, PhD Thesis, Rostock, 2014.

  95. 95

    Corvis, Y., Wurm, A., Schick, C., and Espeau, P., J. Phys. Chem. B, 2015, vol. 119, p. 6848. https://doi.org/10.1021/acs.jpcb.5b03041

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Minakov, A.A., Roy, S.B., Bugoslavsky, Y.V., and Cohen, L.F., Rev. Sci. Instrum., 2005, vol. 76, 043906. https://doi.org/10.1063/1.1889432

    CAS  Article  Google Scholar 

  97. 97

    Androsch, R., Lorenzo, M.L.D., and Schick, C., Macromol. Chem. Phys., 2018, vol. 219, no. 3, 1700479. https://doi.org/10.1002/macp.201700479

    CAS  Article  Google Scholar 

  98. 98

    Poel, G., Istrate, D., Magon, A., and Mathot, V., J. Therm. Anal. Calorim., 2012, vol. 110, p. 1533. https://doi.org/10.1007/s10973-012-2722-7

    CAS  Article  Google Scholar 

  99. 99

    van Herwaarden, S., Iervolino, E., van Herwaarden, F., Wijffels, T., Leenaers, A., and Mathot, V., Thermochim. Acta, 2011, vol. 522, nos. 1–2, p. 46. https://doi.org/10.1016/j.tca.2011.05.025

    CAS  Article  Google Scholar 

  100. 100

    Sarge, S.M., Hemminger, W., Gmelin, E., Hohne, G.W.H., Cammenga, H.K., and Eysel, W., J. Therm. Anal., 1997, vol. 49, p. 1125.

    CAS  Article  Google Scholar 

  101. 101

    Gataullina, K.V., Buzyurov, A.V., Ziganshin, M., Padnya, P.L., Stoikov, I., Schick, C., and Gorbatchuk, V., CrystEngComm, 2019, vol. 21, p. 1034. https://doi.org/10.1039/C8CE01865K

    CAS  Article  Google Scholar 

  102. 102

    Toda, A., Androsch, R., and Schick, C., Polymer, 2016, vol. 91, p. 239. https://doi.org/10.1016/j.polymer.2016.03.038

    CAS  Article  Google Scholar 

  103. 103

    Kamal, M.R. and Chu, E., Polym. Eng. Sci., 1983, vol. 23, no. 1, p. 27. https://doi.org/10.1002/pen.760230107

    CAS  Article  Google Scholar 

  104. 104

    Yu, S., Wang, S., Lu, M., and Zuo, L., Front. Mech. Eng., 2017, vol. 12, p. 526. https://doi.org/10.1007/s11465-017-0451-0

    Article  Google Scholar 

  105. 105

    Mukhametzyanov, T.A., Sedov, I.A., Solomonov, B.N., and Schick, C., Biochim. Biophys. Acta, Gen. Subj., 2018, vol. 1862, no. 9, p. 2024. https://doi.org/10.1016/j.bbagen.2018.06.019

    CAS  Article  Google Scholar 

  106. 106

    Mukhametzyanov, T.A., Fatkhutdinova, A.A., Sedov, I.A., Yakimova, L.S., and Klimovitskii, A.E., Thermochim. Acta, 2021, vol. 695, 178826. https://doi.org/10.1016/j.tca.2020.178826

    CAS  Article  Google Scholar 

  107. 107

    Sanchez-Ruiz, J.M., Biophys. J., 1992, vol. 61, no. 4, p. 921. https://doi.org/10.1016/S0006-3495(92)81899-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108

    Lepock, J.R., Ritchie, K.P., Kolios, M.C., Rodahl, A.M., Heinz, K.A., and Kruuv, J., Biochemistry, 1992, vol. 31, no. 50, p. 12706. https://doi.org/10.1021/bi00165a023

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Cebe, P., Hu, X., Kaplan, D.L., Zhuravlev, E., Wurm, A., Arbeiter, D., and Schick, C., Sci. Rep., 2013, vol. 3, p. 1130. https://doi.org/10.1038/srep01130

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Splinter, R., van Herwaarden, A.W., van Wetten, I.A., Pfreundt, A., and Svendsen, W.E., Thermochim. Acta, 2015, vol. 603, p. 162. https://doi.org/10.1016/j.tca.2014.07.013

    CAS  Article  Google Scholar 

  111. 111

    Abdelaziz, A., Zaitsau, D.H., Mukhametzyanov, T., Solomonov, B., Cebe, P., Verevkin, S.P., and Schick, C., Thermochim. Acta, 2017, vol. 657, p. 47. https://doi.org/10.1016/j.tca.2017.09.013

    CAS  Article  Google Scholar 

  112. 112

    Rariy, R.V. and Klibanov, A.M., Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 25, p. 13520. https://doi.org/10.1073/pnas.94.25.13520

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113

    Knubovets, T., Osterhout, J.J., Connolly, P.J., and Klibanov, A.M., Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, no. 4, p. 1262. https://doi.org/10.1073/pnas.96.4.1262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Burova, T.V., Grinberg, N.V., Grinberg, V.Y., Rariy, R.V., and Klibanov, A.M., Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2000, vol. 1478, no. 2, p. 309. https://doi.org/10.1016/S0167-4838(00)00028-5

    CAS  Article  Google Scholar 

  115. 115

    Spinozzi, F., Ortore, M.G., Sinibaldi, R., Mariani, P., Esposito, A., Cinelli, S., and Onori, G., J. Chem. Phys., 2008, vol. 129, no. 3, 035101. https://doi.org/10.1063/1.2945303

    CAS  Article  PubMed  Google Scholar 

  116. 116

    Cebe, P., Thomas, D., Merfeld, J., Partlow, B.P., Kaplan, D.L., Alamo, R.G., Wurm, A., Zhuravlev, E., and Schick, C., Polymer, 2017, vol. 126, p. 240. https://doi.org/10.1016/j.polymer.2017.08.042

    CAS  Article  Google Scholar 

  117. 117

    Kissinger, H.E., Anal. Chem., 1957, vol. 29, no. 11, p. 1702.

    CAS  Article  Google Scholar 

  118. 118

    Blaine, R.L. and Kissinger, H.E., Thermochim. Acta, 2012, vol. 540, p. 1. https://doi.org/10.1016/j.tca.2012.04.008

    CAS  Article  Google Scholar 

  119. 119

    Clarkson, J.R., Cui, Z.F., and Darton, R.C., J. Colloid Interface Sci., 1999, vol. 215, no. 2, p. 323. https://doi.org/10.1006/jcis.1999.6255

    CAS  Article  PubMed  Google Scholar 

  120. 120

    Elkordy, A.A., Forbes, R.T., and Barry, B.W., Int. J. Pharm., 2002, vol. 247, no. 1, p. 79. https://doi.org/10.1016/S0378-5173(02)00379-4

    CAS  Article  PubMed  Google Scholar 

  121. 121

    Kamiyama, T., Liu, H.L., and Kimura, T., J. Therm. Anal. Calorim., 2009, vol. 95, no. 2, p. 353. https://doi.org/10.1007/s10973-008-9232-7

    CAS  Article  Google Scholar 

  122. 122

    Stavropoulos, P., Thanassoulas, A., and Nounesis, G., J. Chem. Thermodyn., 2018, vol. 118, p. 331. https://doi.org/10.1016/j.jct.2017.10.006

    CAS  Article  Google Scholar 

  123. 123

    Verevkin, S.P., Zaitsau, D.H., Emel’yanenko, V.N., and Heintz, A., J. Phys. Chem. B, 2011, vol. 115, no. 44, p. 12889. https://doi.org/10.1021/jp207397v

    CAS  Article  PubMed  Google Scholar 

  124. 124

    Zaitsau, D.H., Verevkin, S.P., Emel’yanenko, V.N., and Heintz, A., ChemPhysChem, 2011, vol. 12, no. 18, p. 3609. https://doi.org/10.1002/cphc.201100618

    CAS  Article  PubMed  Google Scholar 

  125. 125

    Solomonov, B.N., Varfolomeev, M.A., Nagrimanov, R.N., Mukhametzyanov, T.A., and Novikov, V.B., Thermochim. Acta, 2015, vol. 622, p. 107. https://doi.org/10.1016/j.tca.2015.10.020

    CAS  Article  Google Scholar 

  126. 126

    Solomonov, B.N., Nagrimanov, R.N., Varfolomeev, M.A., Buzyurov, A.V., and Mukhametzyanov, T.A., Thermochim. Acta, 2016, vols. 627–629, p. 77. https://doi.org/10.1016/j.tca.2016.02.001

    CAS  Article  Google Scholar 

  127. 127

    Yagofarov, M.I., Nagrimanov, R.N., and Solomonov, B.N., J. Chem. Thermodyn., 2017, vol. 105, p. 50. https://doi.org/10.1016/j.jct.2016.09.029

    CAS  Article  Google Scholar 

  128. 128

    Yagofarov, M.I., Nagrimanov, R.N., and Solomonov, B.N., J. Chem. Thermodyn., 2017, vol. 113, p. 301. https://doi.org/10.1016/j.jct.2017.06.017

    CAS  Article  Google Scholar 

  129. 129

    Yagofarov, M.I., Nagrimanov, R.N., Ziganshin, M.A., and Solomonov, B.N., J. Chem. Thermodyn., 2018, vol. 116, p. 152. https://doi.org/10.1016/j.jct.2017.09.006

    CAS  Article  Google Scholar 

  130. 130

    Yagofarov, M.I., Nagrimanov, R.N., Ziganshin, M.A., and Solomonov, B.N., J. Chem. Thermodyn., 2018, vol. 120, p. 21. https://doi.org/10.1016/j.jct.2017.12.022

    CAS  Article  Google Scholar 

  131. 131

    Yagofarov, M.I., Nagrimanov, R.N., and Solomonov, B.N., J. Mol. Liq., 2018, vol. 256, p. 58. https://doi.org/10.1016/j.molliq.2018.01.114

    CAS  Article  Google Scholar 

  132. 132

    Zaitseva, K.V., Varfolomeev, M.A., and Verevkin, S.P., J. Mol. Liq., 2019, vol. 293, 111453. https://doi.org/10.1016/j.molliq.2019.111453

    CAS  Article  Google Scholar 

  133. 133

    Zaitseva, K.V., Varfolomeev, M.A., and Verevkin, S.P., Fluid Phase Equilib., 2019, vol. 499, 112241. https://doi.org/10.1016/j.fluid.2019.112241

    CAS  Article  Google Scholar 

  134. 134

    Zaitseva, K.V., Zaitsau, D.H., Varfolomeev, M.A., and Verevkin, S.P., Fluid Phase Equilib., 2019, vol. 494, p. 228. https://doi.org/10.1016/j.fluid.2019.04.036

    CAS  Article  Google Scholar 

  135. 135

    Yagofarov, M.I., Lapuk, S.E., Mukhametzyanov, T.A., Ziganshin, M.A., Valiakhmetov, T.F., and Solomonov, B.N., J. Chem. Thermodyn., 2019, vol. 137, p. 43. https://doi.org/10.1016/j.jct.2019.05.015

    CAS  Article  Google Scholar 

  136. 136

    Nagrimanov, R.N., Samatov, A.A., Zaitsau, D.H., and Solomonov, B.N., J. Chem. Thermodyn., 2019, vol. 128, p. 141. https://doi.org/10.1016/j.jct.2018.08.011

    CAS  Article  Google Scholar 

  137. 137

    Samatov, A.A., Nagrimanov, R.N., Miroshnichenko, E.A., and Solomonov, B.N., Thermochim. Acta, 2020, vol. 685, 178529. https://doi.org/10.1016/j.tca.2020.178529

    CAS  Article  Google Scholar 

  138. 138

    Nagrimanov, R.N., Samatov, A.A., Nasyrova, T.M., Buzyurov, A.V., Mukhametzyanov, T.A., Schick, C., Solomonov, B.N., and Verevkin, S.P., J. Chem. Thermodyn., 2020, vol. 146, 106103. https://doi.org/10.1016/j.jct.2020.106103

    CAS  Article  Google Scholar 

  139. 139

    Yagofarov, M.I. and Solomonov, B.N., J. Chem. Thermodyn., 2021, vol. 152, 106278. https://doi.org/10.1016/j.jct.2020.106278

    CAS  Article  Google Scholar 

  140. 140

    Pople, J.A. and Karasz, F.E., J. Phys. Chem. Solids, 1961, vol. 18, no. 1, p. 28. https://doi.org/10.1016/0022-3697(61)90080-4

    CAS  Article  Google Scholar 

  141. 141

    Gracin, S., Brinck, T., and Rasmuson, A.C., Ind. Eng. Chem. Res., 2002, vol. 41, no. 20, p. 5114. https://doi.org/10.1021/ie011014w

    CAS  Article  Google Scholar 

  142. 142

    Jamróz, M.E., Dobrowolski, J.C., Polaczek, J., Szafrański, A.M., Kazimirski, J.K., and Lisicki, Z., J. Chem. Thermodyn., 2001, vol. 33, no. 5, p. 565. https://doi.org/10.1006/jcht.2000.0770

    CAS  Article  Google Scholar 

  143. 143

    Chakroborty, S. and Dutta, P., Metall. Mater. Trans. B, 2001, vol. 32, no. 3, p. 562. https://doi.org/10.1007/s11663-001-0042-6

    Article  Google Scholar 

  144. 144

    Yagofarov, M.I., Lapuk, S.E., Mukhametzyanov, T.A., Ziganshin, M.A., Schick, C., and Solomonov, B.N., Thermochim. Acta, 2018, vol. 668, p. 96. https://doi.org/10.1016/j.tca.2018.08.015

    CAS  Article  Google Scholar 

  145. 145

    Yagofarov, M.I., Lapuk, S.E., Mukhametzyanov, T.A., Ziganshin, M.A., Schick, C., and Solomonov, B.N., J. Mol. Liq., 2019, vol. 278, p. 394. https://doi.org/10.1016/j.molliq.2019.01.046

    CAS  Article  Google Scholar 

  146. 146

    Chua, Y.Z., Do, H.T., Schick, C., Zaitsau, D., and Held, C., RSC Adv., 2018, vol. 8, no. 12, p. 6365. https://doi.org/10.1039/C8RA00334C

    CAS  Article  Google Scholar 

  147. 147

    Abdelaziz, A., Zaitsau, D.H., Kuratieva, N., Verevkin, S.P., and Schick, C., Phys. Chem. Chem. Phys., 2019, vol. 21, p. 12787. https://doi.org/10.1039/C9CP00716D

    CAS  Article  PubMed  Google Scholar 

  148. 148

    Do, H.T., Chua, Y.Z., Habicht, J., Klinksiek, M., Hallermann, M., Zaitsau, D., Schick, C., and Held, C., RSC Adv., 2019, vol. 9, no. 56, p. 32722. https://doi.org/10.1039/C9RA05730G

    CAS  Article  Google Scholar 

  149. 149

    Bolmatenkov, D.N., Yagofarov, M.I., Mukhametzyanov, T.A., Ziganshin, M.A., Schick, C., and Solomonov, B.N., Thermochim. Acta, 2020, vol. 694, 178805. https://doi.org/10.1016/j.tca.2020.178805

    CAS  Article  Google Scholar 

  150. 150

    Olson, E.A., Efremov, M.Y., Kwan, A.T., Lai, S., Petrova, V., Schiettekatte, F., Warren, J.T., Zhang, M., and Allen, L.H., Appl. Phys. Lett., 2000, vol. 77, no. 17, p. 2671.

    CAS  Article  Google Scholar 

  151. 151

    Schawe, J.E.K. and Pogatscher, S., in Fast Scanning Calorimetry, Schick, C. and Mathot, V., Eds., Cham: Springer, 2016, p. 3. https://doi.org/10.1007/978-3-319-31329-0_1

    Book  Google Scholar 

  152. 152

    Hanaya, M., Hikima, T., Hatase, M., and Oguni, M., J. Chem. Thermodyn., 2002, vol. 34, no. 8, p. 1173. https://doi.org/10.1006/jcht.2002.0976

    CAS  Article  Google Scholar 

  153. 153

    Chirico, R.D., Knipmeyer, S.E., and Steele, W.V., J. Chem. Thermodyn., 2002, vol. 34, no. 11, p. 1885. https://doi.org/10.1016/S0021-9614(02)00261-6

    CAS  Article  Google Scholar 

  154. 154

    Chang, S.S. and Bestul, A.B., J. Chem. Phys., 1972, vol. 56, no. 1, p. 503.

    CAS  Article  Google Scholar 

  155. 155

    Santos, L.M.N.B., F., Rocha, M. A. A., Rodrigues, A. S. M. C., Stejfa, V., Fulem, M., and Bastos, M., J. Chem. Thermodyn., 2011, vol. 43, no. 12, p. 1818. https://doi.org/10.1016/j.jct.2011.06.010

    CAS  Article  Google Scholar 

  156. 156

    Kruif, C.G., d., Miltenburg, J. C. v., and Blok, J. G., J. Chem. Thermodyn., 1983, vol. 15, no. 2, p. 129. https://doi.org/10.1016/0021-9614(83)90151-9

    Article  Google Scholar 

  157. 157

    Walker, J.B., Brooks, M., Ewing, C., and Miller, R., Ind. Eng. Chem. Chem. Eng. Data Ser., 1958, vol. 3, no. 2, p. 280. https://doi.org/10.1021/i460004a022

    CAS  Article  Google Scholar 

  158. 158

    Solomonov, B.N., Varfolomeev, M.A., Nagrimanov, R.N., Novikov, V.B., Zaitsau, D.H., and Verevkin, S.P., Thermochim. Acta, 2014, vol. 589, p. 164. https://doi.org/10.1016/j.tca.2014.05.033

    CAS  Article  Google Scholar 

  159. 159

    de la Rama, L.P., Hu, L., Efremov, M.Y., Olson, E.A., Nealey, P.F., McLean, M.A., Sligar, S.G., and Allen, L.H., Thermochim. Acta, 2011, vol. 522, nos. 1–2, p. 72. https://doi.org/10.1016/j.tca.2011.05.033

    CAS  Article  Google Scholar 

  160. 160

    Yin, H., Chua, Y.Z., Yang, B., Schick, C., Harrison, W.J., Budd, P.M., Böhning, M., and Schönhals, A., J. Phys. Chem. Lett., 2018, vol. 9, no. 8, p. 2003. https://doi.org/10.1021/acs.jpclett.8b00422

    CAS  Article  PubMed  Google Scholar 

  161. 161

    Wu, S., Kondo, Y., Kakimoto, M.-A., Yang, B., Yamada, H., Kuwajima, I., Lambard, G., Hongo, K., Xu, Y., Shiomi, J., Schick, C., Morikawa, J., and Yoshida, R., NPJ Comput. Mater., 2019, vol. 5, no. 1, p. 5. https://doi.org/10.1038/s41524-019-0203-2

    CAS  Article  Google Scholar 

  162. 162

    Yin, H., Yang, B., Chua, Y.Z., Szymoniak, P., Carta, M., Malpass-Evans, R., McKeown, N.B., Harrison, W.J., Budd, P.M., Schick, C., Böhning, M., and Schönhals, A., ACS Macro Lett., 2019, vol. 8, p. 1022. https://doi.org/10.1021/acsmacrolett.9b00482

    CAS  Article  Google Scholar 

  163. 163

    Lippits, D.R., Rastogi, S., and Höhne, G.W.H., Phys. Rev. Lett., 2006, vol. 96, no. 21, 218303. https://doi.org/10.1103/PhysRevLett.96.218303

    CAS  Article  PubMed  Google Scholar 

  164. 164

    Peterson, J.D., Vyazovkin, S., and Wight, C.A., Macromol. Chem. Phys., 2001, vol. 202, no. 6, p. 775. https://doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G

    CAS  Article  Google Scholar 

  165. 165

    Palanisamy, M. and Khanam, J., AAPS PharmSciTech, 2011, vol. 12, no. 1, p. 388. https://doi.org/10.1208/s12249-011-9602-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  166. 166

    Corvis, Y., Menet, M.-C., Negrier, P., Lazerges, M., and Espeau, P., New J. Chem., 2013, vol. 37, no. 3, p. 761. https://doi.org/10.1039/C2NJ40933J

    CAS  Article  Google Scholar 

  167. 167

    Cruz-Castañeda, J. and Negrón-Mendoza, A., J. Nucl. Phys., Mater. Sci., Radiat. Appl., 2016, vol. 4, no. 1, p. 183. https://doi.org/10.15415/jnp.2016.41019

    Article  Google Scholar 

  168. 168

    Abdelaziz, A., Zaitsau, D.H., Buzyurov, A., Minakov, A.A., Verevkin, S.P., and Schick, C., Thermochim. Acta, 2019, vol. 676, p. 249. https://doi.org/10.1016/j.tca.2019.05.008

    CAS  Article  Google Scholar 

  169. 169

    Abdelaziz, A., Zaitsau, D.H., Buzyurov, A.V., Verevkin, S.P., and Schick, C., Phys. Chem. Chem. Phys., 2020, vol. 22, no. 2, p. 838. https://doi.org/10.1039/C9CP04761A

    CAS  Article  PubMed  Google Scholar 

  170. 170

    Emel’yanenko, V.N., Zaitsau, D.H., Shoifet, E., Meurer, F., Verevkin, S.P., Schick, C., and Held, C., J. Phys. Chem. A, 2015, vol. 119, no. 37, p. 9680. https://doi.org/10.1021/acs.jpca.5b04753

    CAS  Article  PubMed  Google Scholar 

  171. 171

    Hohne, G.W.H., Cammenga, H.K., Eysel, W., Gmelin, E., and Hemminger, W., Thermochim. Acta, 1990, vol. 160, no. 1, p. 1. https://doi.org/10.1016/0040-6031(90)80235-Q

    Article  Google Scholar 

  172. 172

    Toda, A., Hikosaka, M., and Yamada, K., Polymer, 2002, vol. 43, p. 1667. https://doi.org/10.1016/S0032-3861(01)00733-9

    CAS  Article  Google Scholar 

  173. 173

    Gutzow, I.S. and Schmelzer, J.W.P., The Vitreous State Thermodynamics, Structure, Rheology, and Crystallization, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-34633-0

  174. 174

    Goursot, P., Girdhar, H.L., and Westrum, E.F., J. Phys. Chem., 1970, vol. 74, no. 12, p. 2538. https://doi.org/10.1021/j100706a022

    CAS  Article  Google Scholar 

  175. 175

    Scifinder, 2018. https://scifinder.cas.org/.

  176. 176

    Baeten, D., Mathot, V.B.F., Pijpers, T.F.J., Verkinderen, O., Portale, G., Van Puyvelde, P., and Goderis, B., Macromol. Rapid Commun., 2015, vol. 36, no. 12, p. 1184. https://doi.org/10.1002/marc.201500081

    CAS  Article  PubMed  Google Scholar 

  177. 177

    Baeten, D., Cavallo, D., Portale, G., Androsch, R., Mathot, V., and Goderis, B., in Fast Scanning Calorimetry, Schick, C. and Mathot, V., Eds., Cham: Springer, 2016, p. 327. https://doi.org/10.1007/978-3-319-31329-0_10

  178. 178

    Rosenthal, M., Doblas, D., Hernandez, J.J., Odarchenko, Y.I., Burghammer, M., Di Cola, E., Spitzer, D., Antipov, A.E., Aldoshin, L.S., and Ivanov, D.A., J. Synchrotron Radiat., 2014, vol. 21, p. 223. https://doi.org/10.1107/S1600577513024892

    CAS  Article  PubMed  Google Scholar 

  179. 179

    Riekel, C., Di Cola, E., Reynolds, M., Burghammer, M., Rosenthal, M., Doblas, D., and Ivanov, D.A., Langmuir, 2015, vol. 31, no. 1, p. 529. https://doi.org/10.1021/la504015e

    CAS  Article  PubMed  Google Scholar 

  180. 180

    Melnikov, A.P., Rosenthal, M., Burghammer, M., Anokhin, D.V., and Ivanov, D.A., Nanotechnol. Russ., 2016, vol. 11, no. 5, p. 305. https://doi.org/10.1134/S1995078016030113

    CAS  Article  Google Scholar 

  181. 181

    Doblas, D., Rosenthal, M., Burghammer, M., Chernyshov, D., Spitzer, D., and Ivanov, D.A., Cryst. Growth Des., 2016, vol. 16, no. 1, p. 432. https://doi.org/10.1021/acs.cgd.5b01425

    CAS  Article  Google Scholar 

  182. 182

    Gregoire, J.M., McCluskey, P.J., Dale, D., Ding, S., Schroers, J., and Vlassak, J.J., Scr. Mater., 2012, vol. 66, nos. 3–4, p. 178. https://doi.org/10.1016/j.scriptamat.2011.10.034

    CAS  Article  Google Scholar 

  183. 183

    Gregoire, J.M., Xiao, K., McCluskey, P.J., Dale, D., Cuddalorepatta, G., and Vlassak, J.J., Appl. Phys. Lett., 2013, vol. 102, no. 20, 201902. https://doi.org/10.1063/1.4806972

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  184. 184

    Xiao, K., Gregoire, J.M., McCluskey, P.J., Dale, D., and Vlassak, J.J., J. Appl. Phys., 2013, vol. 113, no. 24, 243501. https://doi.org/10.1063/1.4806972

    CAS  Article  Google Scholar 

  185. 185

    McCluskey, P.J., Xiao, K., Gregoire, J.M., Dale, D., and Vlassak, J.J., Thermochim. Acta, 2015, vol. 603, p. 53. https://doi.org/10.1016/j.tca.2014.07.023

    CAS  Article  Google Scholar 

  186. 186

    Zhang, M., Olson, E.A., Twesten, R.D., Wen, J.G., Allen, L.H., Robertson, I.M., and Petrov, I., J. Mater. Res., 2005, vol. 20, no. 7, p. 1802. https://doi.org/10.1557/JMR.2005.0225

    CAS  Article  Google Scholar 

  187. 187

    Arlington, S.Q., Yi, F., LaVan, D.A., and Weihs, T.P., AIP Adv., 2019, vol. 9, no. 3, 035324. https://doi.org/10.1063/1.5080312

    CAS  Article  Google Scholar 

  188. 188

    Yi, F., Stevanovic, A., Osborn, W.A., Kolmakov, A., and LaVan, D.A., Mater. Horiz., 2017, vol. 4, no. 6, p. 1128. https://doi.org/10.1039/C7MH00513J

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  189. 189

    Van Duong, T., and Van den Mooter, G., Expert Opin. Drug Delivery, 2016, vol. 13, no. 12, p. 1681. https://doi.org/10.1080/17425247.2016.1198769

    CAS  Article  Google Scholar 

  190. 190

    Lehmkemper, K., Kyeremateng, S.O., Bartels, M., Degenhardt, M., and Sadowski, G., Eur. J. Pharm. Biopharm., 2018, vol. 124, p. 147. https://doi.org/10.1016/j.ejpb.2017.12.002

    CAS  Article  PubMed  Google Scholar 

  191. 191

    Lehmkemper, K., Kyeremateng, S.O., Heinzerling, O., Degenhardt, M., and Sadowski, G., Mol. Pharm., 2017, vol. 14, no. 12, p. 4374. https://doi.org/10.1021/acs.molpharmaceut.7b00492

    CAS  Article  PubMed  Google Scholar 

  192. 192

    Vasconcelos, T., Sarmento, B., and Costa, P., Drug Discovery Today, 2007, vol. 12, no. 23, p. 1068. https://doi.org/10.1016/j.drudis.2007.09.005

    CAS  Article  PubMed  Google Scholar 

  193. 193

    Laitinen, R., Löbmann, K., Strachan, C.J., Grohganz, H., and Rades, T., Int. J. Pharm., 2013, vol. 453, no. 1, p. 65. https://doi.org/10.1016/j.ijpharm.2012.04.066

    CAS  Article  PubMed  Google Scholar 

  194. 194

    Van Duong, T., and Van den Mooter, G., Expert Opin. Drug Delivery, 2016, vol. 13, no. 11, p. 1583. https://doi.org/10.1080/17425247.2016.1198768

    CAS  Article  Google Scholar 

  195. 195

    Monnier, X., Viel, Q., Schammé, B., Petit, S., Delbreilh, L., Dupray, V., Coquerel, G., and Dargent, E., Int. J. Pharm., 2018, vol. 536, no. 1, p. 426. https://doi.org/10.1016/j.ijpharm.2017.12.013

    CAS  Article  PubMed  Google Scholar 

  196. 196

    Turnbull, D., Contemp. Phys., 1969, vol. 10, no. 5, p. 473. https://doi.org/10.1080/00107516908204405

    CAS  Article  Google Scholar 

  197. 197

    Yu, L., Adv. Drug Delivery Rev., 2001, vol. 48, no. 1, p. 27. https://doi.org/10.1016/S0169-409X(01)00098-9

    CAS  Article  Google Scholar 

  198. 198

    Baird, J.A., Van Eerdenbrugh, B., and Taylor, L.S., J. Pharm. Sci., 2010, vol. 99, no. 9, p. 3787. https://doi.org/10.1002/jps.22197

    CAS  Article  PubMed  Google Scholar 

  199. 199

    Karmwar, P., Boetker, J.P., Graeser, K.A., Strachan, C.J., Rantanen, J., and Rades, T., Eur. J. Pharm. Sci., 2011, vol. 44, no. 3, p. 341. https://doi.org/10.1016/j.ejps.2011.08.010

    CAS  Article  PubMed  Google Scholar 

  200. 200

    Lapuk, S.E., Zubaidullina, L.S., Ziganshin, M.A., Mukhametzyanov, T.A., Schick, C., and Gerasimov, A.V., Int. J. Pharm., 2019, vol. 562, p. 113. https://doi.org/10.1016/j.ijpharm.2019.03.039

    CAS  Article  PubMed  Google Scholar 

  201. 201

    Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., Thermochim. Acta, 2011, vol. 520, nos. 1–2, p. 1. https://doi.org/10.1016/j.tca.2011.03.034

    CAS  Article  Google Scholar 

  202. 202

    Vyazovkin, S., Chrissafis, K., Lorenzo, M.L.D., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., and Suñol, J.J., Thermochim. Acta, 2014, vol. 590, p. 1. https://doi.org/10.1016/j.tca.2014.05.036

    CAS  Article  Google Scholar 

  203. 203

    Lapuk, S.E., Mukhametzyanov, T.A., Schick, C., and Gerasimov, A.V., Int. J. Pharm., 2020, vol. 574, 118890. https://doi.org/10.1016/j.ijpharm.2019.118890

    CAS  Article  PubMed  Google Scholar 

  204. 204

    Guns, S., Kayaert, P., Martens, J.A., van Humbeeck, J., Mathot, V., Pijpers, T., Zhuravlev, E., Schick, C., and van der Mooter, G., Eur. J. Pharm. Biopharm., 2010, vol. 74, p. 239. https://doi.org/10.1016/j.ejpb.2009.09.009

    CAS  Article  PubMed  Google Scholar 

  205. 205

    Uhlmann, D.R., J. Non-Cryst. Solids, 1972, vol. 7, no. 4, p. 337. https://doi.org/10.1016/0022-3093(72)90269-4

    CAS  Article  Google Scholar 

  206. 206

    Kolmogorov, A.N., Izv. Akad. Nauk SSSR, 1937, vol. 3, p. 355. https://doi.org/10.1007/978-94-011-2260-3_22

    Article  Google Scholar 

  207. 207

    Avrami, M., J. Chem. Phys., 1939, vol. 7, no. 12, p. 1103. https://doi.org/10.1063/1.1750380

    CAS  Article  Google Scholar 

  208. 208

    Johnson, W.A. and Mehl, R., Trans. Iron Steel Soc. AIME, 1939, vol. 135, p. 416.

    Google Scholar 

  209. 209

    Avrami, M., J. Chem. Phys., 1940, vol. 8, no. 2, p. 212. https://doi.org/10.1063/1.1750631

    CAS  Article  Google Scholar 

  210. 210

    Avrami, M., J. Chem. Phys., 1941, vol. 9, p. 177. https://doi.org/10.1063/1.1750872

    CAS  Article  Google Scholar 

  211. 211

    Nascimento, M.L.F., Souza, L.A., Ferreira, E.B., and Zanotto, E.D., J. Non-Cryst. Solids, 2005, vol. 351, no. 40, p. 3296. https://doi.org/10.1016/j.jnoncrysol.2005.08.013

    CAS  Article  Google Scholar 

  212. 212

    Baghel, S., Cathcart, H., Redington, W., and O’Reilly, N.J., Eur. J. Pharm. Biopharm., 2016, vol. 104, p. 59. https://doi.org/10.1016/j.ejpb.2016.04.017

    CAS  Article  PubMed  Google Scholar 

  213. 213

    Gerasimov, A.V., Marat, A.Z., Valery, V.G., and Liana, S.U., Int. J. Pharm. Pharm. Sci., 2014, vol. 6, no. 9.

  214. 214

    Papageorgiou, D.G., Zhuravlev, E., Papageorgiou, G.Z., Bikiaris, D., Chrissafis, K., and Schick, C., Polymer, 2014, vol. 55, no. 26, p. 6725. https://doi.org/10.1016/j.polymer.2014.11.014

    CAS  Article  Google Scholar 

  215. 215

    Zhuravlev, E., Wurm, A., Pötschke, P., Androsch, R., Schmelzer, J.W.P., and Schick, C., Eur. Polym. J., 2014, vol. 52, p. 1. https://doi.org/10.1016/j.eurpolymj.2013.12.015

    CAS  Article  Google Scholar 

  216. 216

    Brown, M.E. and Glass, B.D., Int. J. Pharm., 1999, vol. 190, no. 2, p. 129. https://doi.org/10.1016/S0378-5173(99)00292-6

    CAS  Article  PubMed  Google Scholar 

  217. 217

    Nakamura, K., Watanabe, T., Katayama, K., and Amano, T., J. Appl. Polym. Sci., 1972, vol. 16, p. 1077. https://doi.org/10.1002/app.1972.070160503

    CAS  Article  Google Scholar 

  218. 218

    Vyazovkin, S. and Sbirrazzuoli, N., Macromol. Rapid Commun., 2004, vol. 25, no. 6, p. 733. https://doi.org/10.1002/marc.200300295

    CAS  Article  Google Scholar 

  219. 219

    Safiullina, A.S., Buzyurov, A.V., Ziganshina, S.A., Gerasimov, A.V., Schick, C., Gorbatchuk, V.V., and Ziganshin, M.A., Thermochim. Acta, 2020, vol. 692, 178748. https://doi.org/10.1016/j.tca.2020.178748

    CAS  Article  Google Scholar 

  220. 220

    Kulikov, D., Verevkin, S.P., and Heintz, A., J. Chem. Eng. Data, 2001, vol. 46, no. 6, p. 1593. https://doi.org/10.1021/je010187p

    CAS  Article  Google Scholar 

  221. 221

    Kulikov, D., Verevkin, S.P., and Heintz, A., Fluid Phase Equilib., 2001, vol. 192, no. 1, p. 187. https://doi.org/10.1016/S0378-3812(01)00633-1

    CAS  Article  Google Scholar 

  222. 222

    Davies, M. and Kybett, B., Trans. Faraday Soc., 1965, vol. 61, p. 1608. https://doi.org/10.1039/TF9656101608

    CAS  Article  Google Scholar 

  223. 223

    Verevkin, S.P., in Experimental Thermodynamics, Weir, R. D., and De Loos, T.W., Eds., Amsterdam: Elsevier, 2005, vol. 7, p. 5. https://doi.org/10.1016/S1874-5644(05)80004-9

  224. 224

    Ambrose, D. and Sprake, C.H.S., J. Chem. Thermodyn., 1970, vol. 2, no. 5, p. 631. https://doi.org/10.1016/0021-9614(70)90038-8

    CAS  Article  Google Scholar 

  225. 225

    Ambrose, D., Ellender, J.H., and Sprake, C.H.S., J. Chem. Thermodyn., 1974, vol. 6, no. 9, p. 909. https://doi.org/10.1016/0021-9614(74)90235-3

    CAS  Article  Google Scholar 

  226. 226

    Solomonov, B.N., Varfolomeev, M.A., Nagrimanov, R.N., Novikov, V.B., Buzyurov, A.V., Fedorova, Y.V., and Mukhametzyanov, T.A., Thermochim. Acta, 2015, vol. 622, p. 88. https://doi.org/10.1016/j.tca.2015.09.022

    CAS  Article  Google Scholar 

  227. 227

    Nagrimanov, R.N., Samatov, A.A., Buzyurov, A.V., Kurshev, A.G., Ziganshin, M.A., Zaitsau, D.H., and Solomonov, B.N., Thermochim. Acta, 2018, vol. 668, p. 152. https://doi.org/10.1016/j.tca.2018.07.026

    CAS  Article  Google Scholar 

  228. 228

    Nagrimanov, R.N., Samatov, A.A., and Solomonov, B.N., J. Mol. Liq., 2019, vol. 292, 111365. https://doi.org/10.1016/j.molliq.2019.111365

    CAS  Article  Google Scholar 

  229. 229

    Heym, F., Etzold, B.J.M., Kern, C., and Jess, A., Phys. Chem. Chem. Phys., 2010, vol. 12, no. 38, p. 12089. https://doi.org/10.1039/c0cp00097c

    CAS  Article  PubMed  Google Scholar 

  230. 230

    Heym, F., Etzold, B.J.M., Kern, C., Jess, A., and Green, Chem., 2, vol. 13, no. 6, p. 1453. https://doi.org/10.1039/c0gc00876a

  231. 231

    Heym, F., Korth, W., Etzold, B.J.M., Kern, C., and Jess, A., Thermochim. Acta, 2015, vol. 622, p. 9. https://doi.org/10.1016/j.tca.2015.03.020

    CAS  Article  Google Scholar 

  232. 232

    Sabbah, R., Xu-Wu, A., Chickos, J.S., Leitao, M.L.P., Roux, M.V., and Torres, L.A., Thermochim. Acta, 1999, vol. 331, no. 2, p. 93. https://doi.org/10.1016/S0040-6031(99)00009-X

    CAS  Article  Google Scholar 

  233. 233

    Fuller, E.N., Schettler, P.D., and Giddings, J.C., Ind. Eng. Chem., 1966, vol. 58, no. 5, p. 18. https://doi.org/10.1021/ie50677a007

    CAS  Article  Google Scholar 

  234. 234

    Nichols, G., Kweskin, S., Frericks, M., Reiter, S., Wang, G., Orf, J., Carvallo, B., Hillesheim, D., and Chickos, J., J. Chem. Eng. Data, 2006, vol. 51, no. 2, p. 475. https://doi.org/10.1021/je0503857

    CAS  Article  Google Scholar 

  235. 235

    Emel’yanenko, V.N., Verevkin, S.P., Koutek, B., and Doubsky, J., J. Chem. Thermodyn., 2005, vol. 37, no. 1, p. 73. https://doi.org/10.1016/j.jct.2004.08.004

    CAS  Article  Google Scholar 

  236. 236

    Krasnykh, E.L., Verevkin, S.P., Koutek, B., and Doubsky, J., J. Chem. Thermodyn., 2006, vol. 38, no. 6, p. 717. https://doi.org/10.1016/j.jct.2005.08.003

    CAS  Article  Google Scholar 

  237. 237

    Verevkin, S.P., J. Chem. Thermodyn., 2006, vol. 38, no. 9, p. 1111. https://doi.org/10.1016/j.jct.2005.11.009

    CAS  Article  Google Scholar 

  238. 238

    Price, D.M., Thermochim. Acta, 2001, vols. 367–368, p. 253. https://doi.org/10.1016/S0040-6031(00)00676-6

    Article  Google Scholar 

  239. 239

    Zaitsau, D.H., Paulechka, Y.U., Kabo, G.J., Kolpikau, A.N., Emel’yanenko, V.N., Heintz, A., and Verevkin, S.P., J. Chem. Eng. Data, 2006, vol. 51, no. 1, p. 130. https://doi.org/10.1021/je050277k

    CAS  Article  Google Scholar 

  240. 240

    Zaitsau, D.H., Paulechka, Y.U., Kabo, G.J., Blokhin, A.V., Emel’yanenko, V.N., Verevkin, S.P., and Heintz, A., J. Chem. Eng. Data, 2008, vol. 53, no. 3, p. 694. https://doi.org/10.1021/je700546r

    CAS  Article  Google Scholar 

  241. 241

    Clarke, E.C.W. and Glew, D.N., Trans. Faraday Soc., 1966, vol. 62, p. 539. https://doi.org/10.1039/TF9666200539

    CAS  Article  Google Scholar 

  242. 242

    Verevkin, S.P., Emel’yanenko, V.N., Diky, V., Muzny, C.D., Chirico, R.D., and Frenkel, M., J. Phys. Chem. Ref. Data, 2013, vol. 42, no. 3, 033102. https://doi.org/10.1063/1.4815957

    CAS  Article  Google Scholar 

  243. 243

    Verevkin, S.P., Sazonova, A.Y., Emel’yanenko, V.N., Zaitsau, D.H., Varfolomeev, M.A., Solomonov, B.N., and Zherikova, K.V., J. Chem. Eng. Data, 2015, vol. 60, no. 1, p. 89. https://doi.org/10.1021/je500784s

    CAS  Article  Google Scholar 

  244. 244

    Acree, W. and Chickos, J.S., J. Phys. Chem. Ref. Data, 2010, vol. 39, no. 4, 043101. https://doi.org/10.1063/1.3309507

    CAS  Article  Google Scholar 

  245. 245

    Mollova, A., Androsch, R., Mileva, D., Schick, C., and Benhamida, A., Macromolecules, 2013, vol. 46, no. 3, p. 828. https://doi.org/10.1021/ma302238r

    CAS  Article  Google Scholar 

  246. 246

    Liu, S., Yu, Y., Cui, Y., Zhang, H., and Mo, Z., J. Appl. Polym. Sci., 1998, vol. 70, no. 12, p. 2371. https://doi.org/10.1002/(SICI)1097-4628(19981219)70:12<2371::AID-APP9>3.0.CO;2-4

    CAS  Article  Google Scholar 

  247. 247

    Zhang, Q., Yu, M., and Fu, Q., Polym. Int., 2004, vol. 53, no. 12, p. 1941. https://doi.org/10.1002/pi.1581

    CAS  Article  Google Scholar 

  248. 248

    Guo, Y., Hu, G., Wang, Z., Li, Y., and Yang, Y., J. Wuhan Univ. Technol., Mater. Sci. Ed., 2012, vol. 27, no. 4, p. 702. https://doi.org/10.1007/s11595-012-0532-1

    CAS  Article  Google Scholar 

  249. 249

    Androsch, R. and Schick, C., in Polymer Crystallization I, Auriemma, F., Alfonso, G.C., and Rosa, C.D., Eds., Cham: Springer, 2015, p. 257. https://doi.org/10.1007/12_2015_325

  250. 250

    Schick, C. and Androsch, R., in Fast Scanning Calorimetry, Schick, C. and Mathot, V., Eds., Cham: Springer, 2016, p. 463. https://doi.org/10.1007/978-3-319-31329-0_15

  251. 251

    Schick, C., Androsch, R., and Schmelzer, J.W.P., J. Phys.: Condens. Matter, 2017, vol. 29, 453002. https://doi.org/10.1088/1361-648X/aa7fe0

    CAS  Article  Google Scholar 

  252. 252

    Sedov, I., Magsumov, T., Abdullin, A., Yarko, E., Mukhametzyanov, T., Klimovitsky, A., and Schick, C., Polymers, 2018, vol. 10, no. 8, p. 902. https://doi.org/10.3390/polym10080902

    CAS  Article  PubMed Central  Google Scholar 

  253. 253

    Skoglund, P. and Fransson, A., J. Appl. Polym. Sci., 1996, vol. 61, p. 2455. https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2455::AID-APP25>3.0.CO;2-1

    CAS  Article  Google Scholar 

  254. 254

    Wurm, A., Zhuravlev, E., Eckstein, K., Jehnichen, D., Pospiech, D., Androsch, R., Wunderlich, B., and Schick, C., Macromolecules, 2012, vol. 45, no. 9, p. 3816. https://doi.org/10.1021/ma300363b

    CAS  Article  Google Scholar 

  255. 255

    Gaylord, R.J., J. Polym. Sci.: Polym. Phys. Ed., 1976, vol. 14, no. 10, p. 1827. https://doi.org/10.1002/pol.1976.180141008

    CAS  Article  Google Scholar 

  256. 256

    Mandelkern, L., Crystallization of Polymers, vol. 2: Kinetics and Mechanisms, Cambridge: Cambridge Univ. Press, 2004, 2nd ed. https://doi.org/10.1017/CBO9780511535413

  257. 257

    Jiao, C., Wang, Z., Liang, X., and Hu, Y., Polym. Test., 2005, vol. 24, no. 1, p. 71. https://doi.org/10.1016/j.polymertesting.2004.07.007

    CAS  Article  Google Scholar 

  258. 258

    Tosaka, M., Senoo, K., Kohjiya, S., and Ikeda, Y., J. Appl. Phys., 2007, vol. 101, no. 8, 084909. https://doi.org/10.1063/1.2716382

    CAS  Article  Google Scholar 

  259. 259

    Wunderlich, B., Macromolecular Physics, vol. 2: Crystal Nucleation, Growth, Annealing, New York: Academic, 1976. https://doi.org/10.1002/pol.1976.130140913

  260. 260

    Long, Y., Shanks, R.A., and Stachurski, Z.H., Prog. Polym. Sci., 1995, vol. 20, p. 651. https://doi.org/10.1016/0079-6700(95)00002-W

    CAS  Article  Google Scholar 

  261. 261

    Tammann, G., Z. Phys. Chem., 1898, vol. 25, p. 441. https://doi.org/10.1515/zpch-1898-2526

    CAS  Article  Google Scholar 

  262. 262

    Androsch, R., Schick, C., and Di Lorenzo, M.L., Adv. Polym. Sci., 2018, vol. 279, p. 235. https://doi.org/10.1007/12_2016_13

    CAS  Article  Google Scholar 

  263. 263

    Zhuravlev, E., Schmelzer, J.W.P., Androsch, R., and Schick, C., Int. Polym. Proc., 2016, vol. 31, no. 5, p. 628. https://doi.org/10.3139/217.3246

    CAS  Article  Google Scholar 

  264. 264

    Andrianov, R.A., Androsch, R., Zhang, R., Mukhametzyanov, T.A., Abyzov, A.S., Schmelzer, J.W.P., and Schick, C., Polymer, 2020, vol. 196, 122453. https://doi.org/10.1016/j.polymer.2020.122453

    CAS  Article  Google Scholar 

  265. 265

    Wunderlich, B., Pure Appl. Chem., 1995, vol. 67, no. 6, p. 1019. https://doi.org/10.1351/pac199567061019

    CAS  Article  Google Scholar 

  266. 266

    Androsch, R., Iqbal, H.M.N., and Schick, C., Polymer, 2015, vol. 81, p. 151. https://doi.org/10.1016/j.polymer.2015.11.006

    CAS  Article  Google Scholar 

  267. 267

    Androsch, R., Di Lorenzo, M.L., and Schick, C., Eur. Polym. J., 2016, vol. 75, p. 474. https://doi.org/10.1016/j.eurpolymj.2016.01.020

    CAS  Article  Google Scholar 

  268. 268

    Liu, P., Xue, Y., and Men, Y., Polymer, 2020, vol. 192, 122293. https://doi.org/10.1016/j.polymer.2020.122293

  269. 269

    Rhoades, A.M., Wonderling, N., Schick, C., and Androsch, R., Polymer, 2016, vol. 106, p. 29. https://doi.org/10.1016/j.polymer.2016.10.050

    CAS  Article  Google Scholar 

  270. 270

    Lai, S.L., Carlsson, J.R.A., and Allen, L.H., Appl. Phys. Lett., 1998, vol. 72, no. 9, p. 1098. https://doi.org/10.1063/1.120946

    CAS  Article  Google Scholar 

  271. 271

    Zhang, M., Efremov, M.Y., Schiettekatte, F., Olson, E.A., Kwan, A.T., Lai, S.L., Wisleder, T., Greene, J.E., and Allen, L.H., Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 62, no. 15, p. 10548. https://doi.org/10.1103/PhysRevB.62.10548

    CAS  Article  Google Scholar 

  272. 272

    Molina-Ruiz, M., Lopeandia, A.F., Pi, F., Givord, D., Bourgeois, O., and Rodríguez-Viejo, J., Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 83, no. 14, 140407. https://doi.org/10.1103/PhysRevB.83.140407

    CAS  Article  Google Scholar 

  273. 273

    Ye, Z., de la Rama, L.P., Hu, L., Efremov, M.Y., and Allen, L.H., Thermochim. Acta, 2015, vol. 603, p. 69. https://doi.org/10.1016/j.tca.2014.09.001

    CAS  Article  Google Scholar 

  274. 274

    Hu, L., de la Rama, L.P., Efremov, M.Y., Anahory, Y., Schiettekatte, F., and Allen, L.H., J. Am. Chem. Soc., 2011, vol. 133, no. 12, p. 4367. https://doi.org/10.1021/ja107817x

    CAS  Article  PubMed  Google Scholar 

  275. 275

    Mileva, D., Androsch, R., Zhuravlev, E., and Schick, C., Polymer, 2012, vol. 53, no. 18, p. 3994. https://doi.org/10.1016/j.polymer.2012.06.045

    CAS  Article  Google Scholar 

  276. 276

    Gohn, A.M., Rhoades, A.M., Wonderling, N., Tighe, T., and Androsch, R., Thermochim. Acta, 2017, vol. 655, p. 313. https://doi.org/10.1016/j.tca.2017.07.012

    CAS  Article  Google Scholar 

  277. 277

    Androsch, R., Rhoades, A.M., Stolte, I., and Schick, C., Eur. Polym. J., 2015, vol. 66, p. 180. https://doi.org/10.1016/j.eurpolymj.2015.02.013

    CAS  Article  Google Scholar 

  278. 278

    Androsch, R., Lorenzo, M.L.D., and Schick, C., Macromol. Chem. Phys., 2018, vol. 219, no. 3, 1700479. https://doi.org/10.1002/macp.201700479

  279. 279

    Wei, L., Jiang, J., Shan, M., Chen, W., Deng, Y., Xue, G., and Zhou, D., Rev. Sci. Instrum., 2014, vol. 85, no. 7, 074901. https://doi.org/10.1063/1.4889882

    CAS  Article  PubMed  Google Scholar 

  280. 280

    Melnikov, A.P., Rosenthal, M., Rodygin, A.I., Doblas, D., Anokhin, D.V., Burghammer, M., and Ivanov, D.A., Eur. Polym. J., 2016, vol. 81, p. 598. https://doi.org/10.1016/j.eurpolymj.2015.12.031

    CAS  Article  Google Scholar 

  281. 281

    Zhang, R., Zhuravlev, E., Androsch, R., and Schick, C., Polymers, 2019, vol. 11, no. 5, p. 890. https://doi.org/10.3390/polym11050890

    CAS  Article  PubMed Central  Google Scholar 

  282. 282

    Androsch, R., Zhang, R., and Schick, C., Polymer, 2019, vol. 176, p. 227. https://doi.org/10.1016/j.polymer.2019.05.052

    CAS  Article  Google Scholar 

  283. 283

    Zhang, R., Zhuravlev, E., Schmelzer, J.W.P., Androsch, R., and Schick, C., Macromolecules, 2020, vol. 53, no. 13, p. 5560. https://doi.org/10.1021/acs.macromol.0c00574

    CAS  Article  Google Scholar 

  284. 284

    Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., Nat. Methods, 2012, vol. 9, no. 7, p. 671. https://doi.org/10.1038/nmeth.2089

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  285. 285

    Schindelin, J., Rueden, C.T., Hiner, M.C., and Eliceiri, K.W., Mol. Reprod. Dev., 2015, vol. 82, nos. 7–8, p. 518. https://doi.org/10.1002/mrd.22489

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  286. 286

    Anton, A.M., Zhuravlev, E., Kossack, W., Andrianov, R., Schick, C., and Kremer, F., Colloid Polym. Sci., 2020, vol. 298, p. 697. https://doi.org/10.1007/s00396-020-04666-9

    CAS  Article  Google Scholar 

  287. 287

    Androsch, R., Schick, C., and Rhoades, A.M., Macromolecules, 2015, vol. 48, no. 22, p. 8082. https://doi.org/10.1021/acs.macromol.5b01912

    CAS  Article  Google Scholar 

  288. 288

    Andrsch, R. and Schick, C., J. Phys. Chem. B, 2016, vol. 120, no. 19, p. 4522. https://doi.org/10.1021/acs.jpcb.6b03022

    CAS  Article  Google Scholar 

  289. 289

    Stancik, A.L. and Brauns, E.B., Vib. Spectrosc., 2008, vol. 47, no. 1, p. 66. https://doi.org/10.1016/j.vibspec.2008.02.009

    CAS  Article  Google Scholar 

  290. 290

    Zhuravlev, E., Schmelzer, J.W.P., Wunderlich, B., and Schick, C., Polymer, 2011, vol. 52, no. 9, p. 1983. https://doi.org/10.1016/j.polymer.2011.03.013

    CAS  Article  Google Scholar 

  291. 291

    Androsch, R., Zhuravlev, E., Schmelzer, J.W.P., and Schick, C., Eur. Polym. J., 2018, vol. 102, p. 195. https://doi.org/10.1016/j.eurpolymj.2018.03.026

    CAS  Article  Google Scholar 

  292. 292

    Fokin, V.M., Cabral, A.A., Reis, R.M.C.V., Nascimento, M.L.F., and Zanotto, E.D., J. Non-Cryst. Solids, 2010, vol. 356, p. 358. https://doi.org/10.1016/j.jnoncrysol.2009.11.038

    CAS  Article  Google Scholar 

  293. 293

    Schick, C., Zhuravlev, E., Androsch, R., Wurm, A., and Schmelzer, J.W.P., in Glass: Selected Properties and Crystallization, Schmelzer, J.W.P., Ed., Berlin: De Gruyter, 2014, vol. 1.

    Google Scholar 

  294. 294

    Minakov, A.A., Mordvintsev, D.A., and Schick, C., Polymer, 2004, vol. 45, no. 11, p. 3755. https://doi.org/10.1016/j.polymer.2004.03.072

    CAS  Article  Google Scholar 

  295. 295

    Minakov, A.A., Mordvintsev, D.A., Tol, R., and Schick, C., Thermochim. Acta, 2006, vol. 442, p. 25. https://doi.org/10.1016/j.tca.2005.11.032

    CAS  Article  Google Scholar 

  296. 296

    Furushima, Y., Nakada, M., Ishikiriyama, K., Toda, A., Androsch, R., Zhuravlev, E., and Schick, C., J. Polym. Sci., Part B: Polym. Phys., 2016, vol. 54, p. 2126. https://doi.org/10.1002/polb.24123

    CAS  Article  Google Scholar 

  297. 297

    Jariyavidyanont, K., Androsch, R., and Schick, C., Polymer, 2017, vol. 124, p. 274. https://doi.org/10.1016/j.polymer.2017.07.076

    CAS  Article  Google Scholar 

  298. 298

    Furushima, Y., Kumazawa, S., Umetsu, H., Toda, A., Zhuravlev, E., and Schick, C., Polymer, 2017, vol. 109, p. 307. https://doi.org/10.1016/j.polymer.2016.12.053

    CAS  Article  Google Scholar 

  299. 299

    Furushima, Y., Schick, C., and Toda, A., Polym. Cryst., 2018, vol. 1, no. 2, e10005. https://doi.org/10.1002/pcr2.10005

    CAS  Article  Google Scholar 

  300. 300

    Luo, J., Zhou, T., Fu, X., Liang, H., and Zhang, A., Eur. Polym. J., 2011, vol. 47, no. 2, p. 230. https://doi.org/10.1016/j.eurpolymj.2010.11.017

    CAS  Article  Google Scholar 

  301. 301

    Lee, D., Sim, G.-D., Xiao, K., Choi, Y.S., and Vlassak, J.J., J. Appl. Phys., 2013, vol. 114, 214902. https://doi.org/10.1063/1.4833572

    CAS  Article  Google Scholar 

  302. 302

    Lee, D., Sim, G.-D., Xiao, K., and Vlassak, J.J., J. Phys. Chem. C, 2014, vol. 118, no. 36, p. 21192. https://doi.org/10.1021/jp505941g

    CAS  Article  Google Scholar 

  303. 303

    Xiao, K., Lee, D., and Vlassak, J.J., Appl. Phys. Lett., 2014, vol. 105, no. 17, 171901. https://doi.org/10.1063/1.4900779

    CAS  Article  Google Scholar 

  304. 304

    Li, W., Delpouve, N., Araujo, S., Batteux, F., Bobo, E., Saiter, J.-M., Tan, L., and Negahban, M., Polym. Eng. Sci., 2019, vol. 59, no. 8, p. 1729. https://doi.org/10.1002/pen.25173

    CAS  Article  Google Scholar 

  305. 305

    Woll, K., Neuhauser, T., Acuña, C., Diaz-Droguett, D., and Rosenkranz, A., Lubricants, 2019, vol. 7, no. 11. https://doi.org/10.3390/lubricants7110096

  306. 306

    Schulz, M., Seidlitz, A., Petzold, A., and Thurn-Albrecht, T., Polymer, 2020, vol. 196, 122441. https://doi.org/10.1016/j.polymer.2020.122441

    CAS  Article  Google Scholar 

  307. 307

    Yang, B., Perepezko, J.H., Schmelzer, J.W.P., Gao, Y., and Schick, C., J. Chem. Phys., 2014, vol. 140, 104513. https://doi.org/10.1063/1.4868002

    CAS  Article  PubMed  Google Scholar 

  308. 308

    Linfang, L., Bin, Y., Bingge, Z., Abyzov, A.S., Schmelzer, J.W.P., Schick, C., Fenggui, L., Qijie, Z., and Yulai, G., Mater. Res. Express, 2014, vol. 1, no. 4, 045012. https://doi.org/10.1088/2053-1591/1/4/045012

    CAS  Article  Google Scholar 

  309. 309

    Yang, B., Milkereit, B., Zhang, Y., Rometsch, P.A., Kessler, O., and Schick, C., Mater. Charact., 2016, vol. 120, p. 30. https://doi.org/10.1016/j.matchar.2016.08.016

    CAS  Article  Google Scholar 

  310. 310

    Simon, C., Gao, J., Mao, Y., and Wilde, G., Scr. Mater., 2017, vol. 139, p. 13. https://doi.org/10.1016/j.scriptamat.2017.06.004

    CAS  Article  Google Scholar 

  311. 311

    Yang, B., Malz, S., Zhuravlev, E., Milkereit, B., Schick, C., and Kessler, O., in Transactions on Additive Manufacturing Meets Medicine, Buzug, T.M. and Seitz, H., Eds., 2019, vol. 1, no. 1. https://doi.org/10.18416/AMMM.2019.1909S03P23

  312. 312

    Tasche, L., Hoyer, K.-P., Zhuravlev, E., Grundmeier, G., Schaper, M., and Keßler, O., Surface Inoculation of Aluminum Powders for Additive Manufacturing Guided by Differential Fast Scanning Calorimetry, The Minerals, Metals & Materials Series, 2019.

    Google Scholar 

  313. 313

    McCluskey, P.J. and Vlassak, J.J., Scr. Mater., 2011, vol. 64, no. 3, p. 264. https://doi.org/10.1016/j.scriptamat.2010.10.008

    CAS  Article  Google Scholar 

  314. 314

    Cubeta, U., Bhattacharya, D., and Sadtchenko, V., J. Chem. Phys., 2017, vol. 147, no. 1, 014505. https://doi.org/10.1063/1.4985663

    CAS  Article  PubMed  Google Scholar 

  315. 315

    Zhao, B., Yang, B., Abyzov, A.S., Schmelzer, J.W.P., Rodríguez-Viejo, J., Zhai, Q., Schick, C., and Gao, Y., Nano Lett., 2017, vol. 17, no. 12, p. 7751. https://doi.org/10.1021/acs.nanolett.7b03952

    CAS  Article  PubMed  Google Scholar 

  316. 316

    Haag, F., Geisel, S., Kurtuldu, G., and Löffler, J., Acta Mater., 2018, vol. 151, p. 416. https://doi.org/10.1016/j.actamat.2018.02.029

    CAS  Article  Google Scholar 

  317. 317

    Zhao, B., Yang, B., Rodriguez-Viejo, J., Wu, M., Schick, C., Zhai, Q., and Gao, Y., J. Mater. Res. Technol., 2019, vol. 8, no. 4, p. 3603. https://doi.org/10.1016/j.jmrt.2019.05.023

    CAS  Article  Google Scholar 

  318. 318

    Wu, M., Zhang, Q., Zhao, B., Zhang, L., Zhai, Q., and Gao, Y., J. Therm. Anal. Calorim., 2019, vol. 135, no. 6, p. 2995. https://doi.org/10.1007/s10973-018-7523-1

    CAS  Article  Google Scholar 

  319. 319

    Stringe, M., Rösner, H., and Wilde, G., Thermochim. Acta, 2019, vol. 677, p. 206. https://doi.org/10.1016/j.tca.2019.03.011

    CAS  Article  Google Scholar 

  320. 320

    Yang, B., Schmelzer, J.W.P., Zhao, B., Gao, Y., and Schick, C., Scr. Mater., 2019, vol. 162, p. 146. https://doi.org/10.1016/j.scriptamat.2018.11.014

    CAS  Article  Google Scholar 

  321. 321

    Neuber, N., Frey, M., Gross, O., Baller, J., Gallino, I., and Busch, R., J. Phys.: Condens. Matter, 2020, vol. 32, no. 32, 324001. https://doi.org/10.1088/1361-648x/ab8252

    CAS  Article  Google Scholar 

  322. 322

    Cheng, Q., Han, X., Kaban, I., Soldatov, I., Wang, W.H., Sun, Y.H., and Orava, J., Scr. Mater., 2020, vol. 183, p. 61. https://doi.org/10.1016/j.scriptamat.2020.03.028

    CAS  Article  Google Scholar 

  323. 323

    Orava, J., Greer, A.L., Gholipour, B., Hewak, D.W., and Smith, C.E., Appl. Phys. Lett., 2012, vol. 101, no. 9, 091906. https://doi.org/10.1063/1.4748881

    CAS  Article  Google Scholar 

  324. 324

    Orava, J., Greer, A.L., Gholipour, B., Hewak, D.W., and Smith, C.E., Nat. Mater., 2012, vol. 11, p. 279. https://doi.org/10.1038/nmat3275

    CAS  Article  PubMed  Google Scholar 

  325. 325

    Vermeulen, P.A., Momand, J., and Kooi, B.J., J. Chem. Phys., 2014, vol. 141, no. 2, 024502. https://doi.org/10.1063/1.4886185

    CAS  Article  PubMed  Google Scholar 

  326. 326

    Orava, J. and Greer, A.L., J. Chem. Phys., 2014, vol. 140, no. 21, 214504. https://doi.org/10.1063/1.4880959

    CAS  Article  PubMed  Google Scholar 

  327. 327

    Orava, J. and Greer, A.L., Thermochim. Acta, 2015, vol. 603, p. 63. https://doi.org/10.1016/j.tca.2014.06.021

    CAS  Article  Google Scholar 

  328. 328

    Orava, J., Hewak, D.W., and Greer, A.L., Adv. Funct. Mater., 2015, vol. 25, no. 30, p. 4851. https://doi.org/10.1002/adfm.201501607

    CAS  Article  Google Scholar 

  329. 329

    Boucher, V.M., Cangialosi, D., Yin, H., Schonhals, A., Alegria, A., and Colmenero, J., Soft Matter, 2012, vol. 8, no. 19, p. 5119. https://doi.org/10.1039/C2SM25419K

    CAS  Article  Google Scholar 

  330. 330

    Yung, P., Koh, S.G., and Simon, S.L., Polymer, 2016, vol. 96, p. 182. https://doi.org/10.1016/j.polymer.2016.04.047

    CAS  Article  Google Scholar 

  331. 331

    Tao, R., Gurung, E., Cetin, M.M., Mayer, M.F., Quitevis, E.L., and Simon, S.L., Thermochim. Acta, 2017, vol. 654, p. 121. https://doi.org/10.1016/j.tca.2017.05.008

    CAS  Article  Google Scholar 

  332. 332

    Eulate, N.G., Di Lisio, V., and Cangialosi, D., ACS Macro Lett., 2017, vol. 6, no. 8, p. 859. https://doi.org/10.1021/acsmacrolett.7b00484

    CAS  Article  Google Scholar 

  333. 333

    Monnier, X., Maigret, J.-E., Lourdin, D., and Saiter, A., Carbohydr. Polym., 2017, vol. 173, p. 77. https://doi.org/10.1016/j.carbpol.2017.05.042

    CAS  Article  PubMed  Google Scholar 

  334. 334

    Koh, Y.P. and Simon, S.L., Polymer, 2018, vol. 143, p. 40. https://doi.org/10.1016/j.polymer.2018.02.038

    CAS  Article  Google Scholar 

  335. 335

    Tropin, T.V., Schmelzer, J.W.P., Schulz, G., and Schick, C., in The Scaling of Relaxation Processes, Kremer, F., and Loidl, A., Eds., Cham: Springer, 2018, p. 307. https://doi.org/10.1007/978-3-319-72706-6_10

  336. 336

    Gallino, I., Cangialosi, D., Evenson, Z., Schmitt, L., Hechler, S., Stolpe, M., and Ruta, B., Acta Mater., 2018, vol. 144, p. 400. https://doi.org/10.1016/j.actamat.2017.10.060

    CAS  Article  Google Scholar 

  337. 337

    Monnier, X. and Cangialosi, D., Phys. Rev. Lett., 2018, vol. 121, no. 13, 137801. https://doi.org/10.1103/PhysRevLett.121.137801

    CAS  Article  PubMed  Google Scholar 

  338. 338

    Schmelzer, J.W.P., Tropin, T.V., Fokin, V.M., Zhang, R., Abdelaziz, A., Chua, Y.Z., Madhavi, V., Shaffer, T.D., and Schick, C., Int. J. Appl. Glass Sci., 2019, vol. 10, no. 4, p. 502. https://doi.org/10.1111/ijag.13240

    CAS  Article  Google Scholar 

  339. 339

    Schawe, J.E.K. and Hess, K.-U., Thermochim. Acta, 2019, vol. 677, p. 85. https://doi.org/10.1016/j.tca.2019.01.001

    CAS  Article  Google Scholar 

  340. 340

    Schawe, J.E.K. and Löffler, J.F., Nat. Commun., 2019, vol. 10, no. 1, p. 1337. https://doi.org/10.1038/s41467-018-07930-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  341. 341

    Monnier, X., Cangialosi, D., Ruta, B., Busch, R., and Gallino, I., Sci. Adv., 2020, vol. 6, no. 17, eaay1454. https://doi.org/10.1126/sciadv.aay1454

  342. 342

    Furushima, Y., Thermochim. Acta, 2019, vol. 677, p. 79. https://doi.org/10.1016/j.tca.2018.12.012

    CAS  Article  Google Scholar 

  343. 343

    Robles-Hernández, B., Monnier, X., Pomposo, J.A., Gonzalez-Burgos, M., Cangialosi, D., and Alegría, A., Macromolecules, 2019, vol. 52, no. 18, p. 6868. https://doi.org/10.1021/acs.macromol.9b01257

    CAS  Article  Google Scholar 

  344. 344

    Cubeta, U.S. and Sadtchenko, V., J. Chem. Phys., 2019, vol. 150, no. 9, 094508. https://doi.org/10.1063/1.5046304

    CAS  Article  PubMed  Google Scholar 

  345. 345

    Szymoniak, P., Pauw, B.R., Qu, X., and Schönhals, A., Soft Matter, 2020, vol. 16, no. 23, p. 5406. https://doi.org/10.1039/D0SM00744G

    CAS  Article  PubMed  Google Scholar 

  346. 346

    Al-Mukadam, R., Di Genova, D., Börnhoft, H., and Deubener, J., J. Non-Cryst. Solids, 2020, vol. 536, 119992. https://doi.org/10.1016/j.jnoncrysol.2020.119992

    CAS  Article  Google Scholar 

  347. 347

    Monnier, X., Delpouve, N., and Saiter-Fourcin, A., Soft Matter, 2020, vol. 16, no. 13, p. 3224. https://doi.org/10.1039/C9SM02541C

    CAS  Article  PubMed  Google Scholar 

  348. 348

    Guigo, N., Sbirrazzuoli, N., and Vyazovkin, S., Soft Matter, 2012, vol. 8, no. 27, p. 3116. https://doi.org/10.1039/C2SM25737H

    Article  Google Scholar 

  349. 349

    Koutras, N., Amirdine, J., and Boyard, N., Fernandez Villegas, I., and Benedictus, R., Composites, 2019, vol. 125, 105574. https://doi.org/10.1016/j.Compositesa.2019.105574

    CAS  Article  Google Scholar 

  350. 350

    Fitzharris, E.R., Rosen, D.W., and Shofner, M.L., Polymer, 2019, vol. 166, p. 196. https://doi.org/10.1016/j.polymer.2019.01.083

    CAS  Article  Google Scholar 

  351. 351

    Davletbaeva, I.M., Klinov, A.V., Khairullina, A.R., Malygin, A.V., Dulmaev, S.E., Davletbaeva, A.R., and Mukhametzyanov, T.A., Processes, 2020, vol. 8, no. 5, p. 628.

    CAS  Article  Google Scholar 

  352. 352

    Meylan, C.M., Orava, J., and Greer, A.L., J. Non-Cryst. Solids: X, 2020, vol. 8, 100051. https://doi.org/10.1016/j.nocx.2020.100051

    CAS  Article  Google Scholar 

  353. 353

    Zhang, X., Zhao, S., and Xin, Z., Polymer, 2020, vol. 202, 122631. https://doi.org/10.1016/j.Polymer.2020.122631

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to their students, collaborators, and, particularly, the authors of the individual studies summarized here.

Funding

The work was supported by the RF Ministry of Science and Higher Education, grant no. 14.Y26.31.0019.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Christoph Schick or Boris N. Solomonov.

Ethics declarations

Evaluation and decision of acceptance of this paper was made by the Editorial board without input of the authorsor any persons affiliated with them.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schick, C., Mukhametzyanov, T.A. & Solomonov, B.N. Fast Scanning Calorimetry of Organic Materials from Low Molecular Mass Materials to Polymers. rev. and adv. in chem. 11, 1–72 (2021). https://doi.org/10.1134/S2079978021010064

Download citation

Keywords:

  • fast scanning calorimetry (FSC)
  • phase transition temperatures
  • enthalpy
  • heat capacity
  • vapor pressure