Skip to main content

Sizes Monitoring of Polyelectrolyte Flexible Chains over the Entire Range of Ionic Strength through Viscometry of Dilute Solutions

Abstract

100 years after the birth of polymer science, it can be stated that viscometry of dilute polymer solutions is the most popular method among molecular hydrodynamics methods, the purpose of which is to obtain the molecular characteristics of individual polymer chains. The viscous flow of dilute aqueous solutions of polyelectrolytes–statistical copolymers of N-methyl-N-vinylacetamide and N-methyl-N-vinylamine hydrochloride was investigated in the range of ionic strengths from the minimum (10–6 M) to the maximum possible 6 M NaCl. Intrinsic viscosities were determined as ∂lnηr/∂c at c → 0. The obtained generalized dependence of the intrinsic viscosity on the ionic strength of the solution in a double logarithmic scale is sigmoidal. The intrinsic viscosity values change insignificantly in the range 10–6–10–4 M. The nature of the change in the hydrodynamic volume of charged macromolecules in the entire range of ionic strengths of solutions is discussed in comparison with the theory of single polyelectrolyte macromolecule in the salt solution developed by Vasilevskaya et al., [26].

This is a preview of subscription content, access via your institution.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Staudinger, H., in Nobel Lectures, Chemistry 1942−1962, Amsterdam: Elsevier, 1964, p 397−419; Staudinger, H., Trans. Faraday Soc. 1933, vol. 29, no. 140, p. 18–32.

    CAS  Article  Google Scholar 

  2. 2

    Kraemer, E.O., Ind. Eng. Chem., 1938, vol. 30, no. 10, pp. 1200–1203.

    CAS  Article  Google Scholar 

  3. 3

    Polymer Handbook, Brandrup, J., Immergut, E.H., and Grulke, E.A., Eds., New York: Wiley, 2003, 4th ed.

    Google Scholar 

  4. 4

    Huggins, M.L., J. Am. Chem. Soc., 1942, vol. 64, no. 11, pp. 2716–2718.

    CAS  Article  Google Scholar 

  5. 5

    Fuoss, R.M., J. Polym. Sci., 1948, vol. 3, pp. 603–609.

    CAS  Article  Google Scholar 

  6. 6

    Pals, D.T.F. and Hermans, J.J., J. Polym. Sci., Part A: Polym. Chem., 1950, vol. 5, pp. 733–734.

    CAS  Google Scholar 

  7. 7

    Ng, W.K., Tam, K.C., and Jenkins, R.D., Polymer, 2001, vol. 42, pp. 249–259.

    CAS  Article  Google Scholar 

  8. 8

    Lopez, C.G., Colby, R.H., Graham, P., and Cabral, J.T., Macromolecules, 2017, vol. 50, no. 1, pp. 332–338.

    CAS  Article  Google Scholar 

  9. 9

    Lopez, C.G., Macromolecules, 2019, vol. 52, no. 23, pp. 9409–9415.

    CAS  Article  Google Scholar 

  10. 10

    Nishida, K., Kaji, K., Kanaya, T., and Fanjat, N, Polymer, 2002, vol. 43, pp. 1295–1300.

    CAS  Article  Google Scholar 

  11. 11

    Dou, S. and Colby, R.H., J. Polym. Sci., Part B: Polym. Phys., 2006, vol. 44, p. 2001–2013.

    CAS  Article  Google Scholar 

  12. 12

    Rushing, T.S. and Hester, R.D., Polymer, 2004, vol. 45, pp. 6587–6594.

    CAS  Article  Google Scholar 

  13. 13

    Yang, J., Liu, N., Yu, D., Peng, C., Liu, H., Hu, Y., and Jiang, J. Ind. Eng., Chem. Res., 2005, vol. 44, no. 21, pp. 8120–8126.

    CAS  Article  Google Scholar 

  14. 14

    Lu, Y., An, L., and Wang, Z.-G., Macromolecules, 2013, vol. 46, pp. 5731–574.

    CAS  Article  Google Scholar 

  15. 15

    Katchalsky, A., Kunzle, O., and Kuhn, W., J. Polym. Sci., 1950, vol. 5, pp. 283–300.

    CAS  Article  Google Scholar 

  16. 16

    Ptitsyn, O.B., Vysokomol. Soedin., 1961, vol. 3, p. 1084.

    CAS  Google Scholar 

  17. 17

    Ptitsyn, O.B., Vysokomol. Soedin., 1961, vol. 3, p. 1251.

    CAS  Google Scholar 

  18. 18

    Ptitsyn, O.B., Vysokomol. Soedin., 1961, vol. 3, p. 1401.

    CAS  Google Scholar 

  19. 19

    Odijk, T., J. Polym. Sci., Polym. Phys. Ed., 1977, vol. 15, pp. 477–483.

    CAS  Article  Google Scholar 

  20. 20

    Skolnick, J. and Fixman, M., Macromolecules, 1977, vol. 10, no. 5, pp. 944–948.

    CAS  Article  Google Scholar 

  21. 21

    Barrat, J.-L. and Joanny, J.-F., Europhys. Lett., 1993, vol. 24, no. 5, pp. 333–338.

    CAS  Article  Google Scholar 

  22. 22

    Dobrynin, A.V., Macromolecules, 2005, vol. 38, no. 22, pp. 9304–9314.

    CAS  Article  Google Scholar 

  23. 23

    Tanaka, T., Phys. Rev. Lett., 1978, vol. 40, pp. 820–823.

    CAS  Article  Google Scholar 

  24. 24

    Khokhlov, A.R. and Grosberg, A.Yu., Statisticheskaya fizika makromolekul (Statistical Physics of Macromolecules), Moscow: Nauka, 1989.

  25. 25

    Kramarenko, E.Yu., Khokhlov, A.R., and Yoshikawa, K., Macromolecules, 1997, vol. 30, pp. 3383–3388.

    CAS  Article  Google Scholar 

  26. 26

    Vasilevskaya, V.V., Khokhlov, A.R., and Yoshikawa, K., Macromol. Theory Simul., 2000, vol. 9, pp. 600–607.

    CAS  Article  Google Scholar 

  27. 27

    Vasilevskaya, V.V., Khokhlov, A.R., Matsuzawa, Y., and Yoshikawa, K., J. Chem. Phys., 1995, vol. 102, p. 6595.

    CAS  Article  Google Scholar 

  28. 28

    Krotova, M.K., Vasilevskaya, V.V., Leclercq, L., Boustta, M., Vert, M., and Khokhlov, A.R., Macromolecules, 2009, vol. 42, p. 7495.

    CAS  Article  Google Scholar 

  29. 29

    Morawetz, H.J., J. Polym. Sci., Part B: Polym. Phys., 2004, vol. 40, no. 11, pp. 1080–1086.

    Article  Google Scholar 

  30. 30

    Dobrynin, A.V. and Rubinstein, M., Prog. Polym. Sci., 2005, vol. 30, no. 11, pp. 1049–1118.

    CAS  Article  Google Scholar 

  31. 31

    Dobrynin, A.V., in Polymer Science: A Comprehensive Reference, Matyjaszewski, K. and Möller, M., Eds., Amsterdam: Elsevier, 2012, vol. 1, pp. 81–132.

    Google Scholar 

  32. 32

    Muthukumar, M., Macromolecules, 2017, vol. 50, pp. 9528–9560.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Stevens, M.J. and Kremer, K., J. Chem. Phys., 1995, vol. 103, p. 1669.

    CAS  Article  Google Scholar 

  34. 34

    Yang, J., Liu, N., Yu, D., Peng, C., Liu, H., and Hu, Y., Ind. Eng. Chem. Res., 2005, vol. 44, no. 21, pp. 8120–8126.

    CAS  Article  Google Scholar 

  35. 35

    Ashok, B. and Muthukumar, M., J. Phys. Chem. B, 2009, vol. 113, pp. 5736–5745.

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Lopez, C.G., Colby, R.H., Graham, P., and Cabral, J.T., Macromolecules, 2017, vol. 50, pp. 332–338.

    CAS  Article  Google Scholar 

  37. 37

    Pavlov, G.M., Gubarev, A.S., Zaitseva, I.I., and Sibileva, M.A., Russ. J. Appl. Chem., 2006, vol. 79, no. 9, pp. 1407–1412.

    CAS  Article  Google Scholar 

  38. 38

    Pavlov, G.M. and Gubarev, A.S., in Advances in Physicochemical Properties of Biopolymers (Part 1), Masuelli, M.A. and Renard, D., Eds., Sharjah: Bentham Sci., 2017, vol. 1, pp. 433–460.

    Google Scholar 

  39. 39

    Wolf, B.A., Macromol. Rapid Commun., 2007, vol. 28, pp. 164–170.

    CAS  Article  Google Scholar 

  40. 40

    Pavlov, G.M., Okatova, O.V., Gubarev, A.S., Gavrilova, I.I., and Panarin, E.F., Macromolecules, 2014, vol. 47, no. 8, pp. 2748–2758.

    CAS  Article  Google Scholar 

  41. 41

    Pavlov, G.M., Dommes, O.A., Okatova, O.V., Gavrilova, I.I., and Panarin, E.F., Phys. Chem. Chem. Phys., 2018, vol. 20, pp. 9947–9981.

    Article  Google Scholar 

  42. 42

    Gavrilova, I.I., Panarin, E.F., and Nesterova, N.A., Russ. J. Appl. Chem., 2012, vol. 85, no. 3, pp. 413–416.

    CAS  Article  Google Scholar 

  43. 43

    Eich, A. and Wolf, B.A., Chem. Phys. Chem., 2011, vol. 12, pp. 2786–2790.

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Wolf, B.A., RSC Adv., 2016, vol. 6, pp. 38004−38011.

    CAS  Article  Google Scholar 

  45. 45

    Badiger, M.V., Gupta, N.R., Bernhard, J.E., and Wolf, B.A., Macromol. Chem. Phys., 2008, vol. 209, pp. 2087–2093.

    CAS  Article  Google Scholar 

  46. 46

    Eckelt, J., Knopf, A., and Wolf, B.A., Macromolecules, 2008, vol. 41, no. 3, pp. 912–918.

    CAS  Article  Google Scholar 

  47. 47

    Andreeva, L.N., Nekrasova, T.N., Nazarova, O.V., Bezrukova, M.A., Zolotova, J.I., Lebedeva, E.V., Tsvetkov, N.V., and Panarin, E.F., Eur. Polym. J., 2016, vol. 83, p. 22–34.

    CAS  Article  Google Scholar 

  48. 48

    Spatareanu, A., Bercea, M., Budtova, T., Harabagiu, V., Sacarescu, L., and Coseri, S., Carbohydr. Polym., 2014, vol. 111, pp. 63–71.

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Dragan, E.S., Bercea, M., and Sacarascu, L., React. Funct. Polym., 2018, vol. 124, pp. 171–180.

    CAS  Article  Google Scholar 

  50. 50

    Cohen, J., Priel, Z., and Rabin, Y., J. Chem. Phys., 1988, vol. 88, no. 11, pp. 7111–7116.

    CAS  Article  Google Scholar 

  51. 51

    Yamanaka, J., Matsuoka, H., Kitano, H., Hasegawa, M., and Ise, N., J. Am. Chem. Soc., 1990, vol. 112, pp. 587–592.

    CAS  Article  Google Scholar 

  52. 52

    Rinaudo, M., Milas, M., Jouon, N., and Borsali, R., Polymer, 1993, vol. 34, no. 17, pp. 3710–3715.

    CAS  Article  Google Scholar 

  53. 53

    Vink, H., Polymer, 1992, vol. 33, p. 3711.

    CAS  Article  Google Scholar 

  54. 54

    Martin, N.B., Tripp, J.B., Shibata, J.H., and Schurr, J.M., Biopolymers, 1979, vol. 18, p. 2127.

    CAS  Article  Google Scholar 

  55. 55

    Cox, R.A., J. Polym. Sci., 1960, vol. 47, no. 149, pp. 441–447.

    CAS  Article  Google Scholar 

  56. 56

    Frisman, E.V., Schagina, L.V., Vorob’ev, V.I., and Shapiro, T.V., Biochemistry, 1966, vol. 31, pp. 1027–1032.

    CAS  Google Scholar 

  57. 57

    Yamakawa, H. and Fujii, M., Macromolecules, 1974, vol. 7, no. 1, pp. 128–134.

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Takahashi, A., Kato, T., and Nagasawa, M., J. Phys. Chem., 1967, vol. 71, pp. 2001–2010.

    Article  Google Scholar 

  59. 59

    Hirose, E., Iwamoto, Y., and Norisuye, T., Macromolecules, 1999, vol. 32, pp. 8629–8634.

    CAS  Article  Google Scholar 

  60. 60

    Prabhu, V.M., Muthukumar, M., Wignall, G.D., and Melnichenko, Y.B., Polymer, 2001, vol. 42, pp. 8935–8946.

    CAS  Article  Google Scholar 

  61. 61

    Pavlov, G.M., in Encyclopedia of Biophysics, Roberts, G. and Watts, A., Eds., Heidelberg: Springer, 2020, 2nd ed. https://doi.org/10.1007/978-3-642-35943-9_295-1

    Book  Google Scholar 

  62. 62

    Tanford, C., Physical Chemistry of Macromolecules, New York: Wiley, 1961.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the chief of the Laboratory of Hydrophilic Polymers of the Institute of Macromolecular Compounds of the Russian Academy of Sciences, corresponding member RAS, Prof. E.F. Panarin and scientific researcher of this laboratory, I.I. Gavrilova, for the provided polymer samples.

The authors are grateful to the referees for their careful reading of the manuscript and useful comments, and are also appreciative to the referee who pointed to the publication that made it possible to compare our experimental results with theoretical ones.

Funding

The authors acknowledge funding from the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-794).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. M. Pavlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dommes, O.A., Gosteva, A.A., Okatova, O.V. et al. Sizes Monitoring of Polyelectrolyte Flexible Chains over the Entire Range of Ionic Strength through Viscometry of Dilute Solutions. rev. and adv. in chem. 11, 134–144 (2021). https://doi.org/10.1134/S2079978021010027

Download citation

Keywords:

  • linear polyelectrolytes
  • ionic strength
  • size
  • conformation