Abstract
Polyampholytes are unique macromolecules containing acid/base or anionic/cationic groups in the main or side chains that mimic the behavior of proteins, polypeptides or polynucleotides. Water-soluble and water-swelling polyampholytes exhibit salt-tolerant, thermal-resistant, shear-stable, self-healing, anti-fouling, self-assembling, and stimuli-responsive properties that provide broad impact as structural biomaterials, drug delivery and chemo-mechanical systems, biosensors, energy storage devices, supercapacitors, actuators etc. In this review we mainly pay attention to fundamental and applied aspects of synthetic polyampholytes in the context of biotechnology and medicine. Among the outlined topics the role of linear and crosslinked amphoteric macromolecules as well as macromolecular complexes of polyampholytes with polyelectrolytes, DNA, proteins and drugs is highlighted. Cryoprotective behavior of synthetic polyampholytes is shown with respect to cell preservation and viability. Injectable, soft, flexible, stretchable, self-healing and stimuli-responsive physically or chemically crosslinked polyampholyte gels that are promising materials for fabrication of artificial tissue, wound dressing, cartilage, cardiovascular, bone defect repair, regenerative medicine and tissue engineering scaffolds, soft actuators and sensors, soft robotics are also in the eyeshot of this review. Hierarchically structured multi-responsive polyampholytic gels, multilayered films and membranes possessing encapsulation–release and “on–off” behaviors are considered as antibiofouling, anticoagulation, and drug delivery system.
This is a preview of subscription content, access via your institution.
























Similar content being viewed by others
REFERENCES
Ruff, K.M., Roberts, S., Chilkoti, A., and Pappu, R.V., J. Mol. Biol., 2018, vol. 430, p. 4619.
Batchelor, M. and Paci, E., J. Phys. Chem. B, 2018, vol. 122, p. 11784.
Grinberg, V.Y., Burova, T.V., Grinberg, N.V., Alvarez-Lorenzo, C., and Khokhlov, A.R., Polymer, 2019, vol. 179, 121617.
Xia, Y., Gao, M., Chen, Y., Jia, X., and Liang, D., Macromol. Chem. Phys., 2011, vol. 212, p. 2268.
Sun, J., Černoch, P., Völkel, A., Wei, Y., Ruokolainen, J., and Schlaad, H., Macromolecules, 2016, vol. 49, no. 15, p. 5494.
Dimassi, S., Tabary, N., Chai, F., Blanchemain, N., and Martel, B., Carbohydr. Polym., 2018, vol. 202, p. 382.
Zurick, K.M. and Bernards, M., J. Appl. Polym. Sci., 2014, vol. 131, p. 40069.
Bernards, M. and He, Y., J. Biomater. Sci., Polym. Ed., 2014, vol. 25, p. 1479.
Matsumura, K., Rajan, R., Ahmed, S., and Jain, M., in Biopolymers for Medical Applications, Ruso, J.M., and Messina, P.V., Eds., Boca Raton: CRC, 2017, p. 182.
Zheng, L., Sundaram, H.S., Wei, Z., Li, C., and Yuan, Z., React. Funct. Polym., 2017, vol. 118, p. 51.
Kudaibergenov, S.E., Polyampholytes: Synthesis, Characterization and Application, New York: Kluwer, 2002.
Lowe, A.B. and McCormick, C.L., Chem. Rev., 2002, vol. 102, no. 11, p. 4177.
Kudaibergenov, S.E., Adv. Polym. Sci., 1999, vol. 144, p. 115.
Kudaibergenov, S.E., in Encyclopedia Polymer Science and Technology, Hoboken, NJ: Wiley, 2008, p. 1.
Kudaibergenov, S., Jaeger, W., and Laschewsky, A., Adv. Polym. Sci., 2006, vol. 201, p. 157.
Laschewsky, A., Polymers, 2014, vol. 6, no. 5, p. 1544.
Singh, P.K., Singh, V.K., and Singh, M., e-Polymers, 2007, vol. 7, 030.
Zhou, W.R., Xu, X.J., and Yang, W., Prog. Chem., 2013, vol. 25, no. 6, p. 1023.
Bernards, M. and He, Y., J. Biomater. Sci., Polym. Ed., 2014, vol. 25, nos. 14–15, p. 1479.
Liu, H. and Zhou, J., Prog. Chem., 2012, vol. 24, no. 11, p. 2187.
Ohno, H., Yoshizawa-Fujita, M., and Ogihara, W., in Electrochemical Aspects of Ionic Liquids, Ohno, H., Ed., Hoboken, NJ: Wiley, 2011, p. 433.
Fouillet, C.C.J., Greaves, T.L., Quinn, J.F., Davis, T.P., Adamcik, T., Sani, M.A., Separovic, F., Drummond, C.J., and Mezzenga, R., Macromolecules, 2017, vol. 50, p. 8965.
Ramos, D.P., Sarjinsky, S., Alizadehgiashi, M., Moebus, J., and Kumacheva, E., ACS Omega, 2019, vol. 4, p. 8795.
Kudaibergenov, S.E., Shayakhmetov, Sh.Sh., Rafikov, S.R., and Bekturov, E.A., Dokl. Acad. Nauk USSR, 1979, vol. 246, no. 1, p. 147.
Kudaibergenov, S.E., Shayakhmetov, Sh.Sh., and Bekturov, E.A., Vysokomol. Soedin., Ser. B, 1980, vol. 22, p. 91.
Uversky, V.N., Front. Phys., 2019, vol. 17. https://doi.org/10.3389/fphy.2019.00010
Van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., Kim, P.M., Kriwacki, R.W., Oldfield, C.J., Pappu, R.V., Tompa, P., Uversky, V.N., Wright, P.E., and Babu, M.M., Chem. Rev., 2014, vol. 114, p. 6589.
Wright, P.E. and Dyson, H.J., Nat. Rev. Mol. Cell Biol., 2015, vol. 16, p. 18.
Oldfield, C.J. and Dunker, A.K., Ann. Rev. Biochem., 2014, vol. 83, p. 553.
Das, R.K. and Pappu, R.V., Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, p. 13392.
Bergel, D.H., J. Physiol., 1961, vol. 156, p. 445.
Showalter, A.M., Plant Cell, 1993, vol. 5, p. 9.
Lin, Y.H. and Chan, H.S., Biophys. J., 2017, vol. 112, p. 2043.
Holehouse, A.S., Das, R.K., Ahad, J.N., Richardson, M.O.G., and Pappu, R.V., Biophys. J., 2017, vol. 112, no. 1, p. 16.
Bertin, A., Adv. Polym. Sci., 2013, vol. 256, p. 103.
Kabanov, A.V., Astafyeva, I.V., Chikindas, M.L., Rosenblat, G.F., Kiselev, V.I., Severin, E.S., and Kabanov, V.A., Biopolymers, 1991, vol. 31, p. 1437.
Kabanov, A.V. and Kabanov, V.A., Bioconjugate Chem., 1995, vol. 6, p. 7.
Izumrudov, V.A., Zhiryakova, M.V., and Kudaibergenov, S.E., Biopolymers, 1999, vol. 52, p. 94.
Izumrudov, V.A., Zelikin, A.N., Zhiryakova, M.V., Jaeger, W., and Bohrish, J., J. Phys. Chem. B, 2003, vol. 107, p. 7982.
Wolff, J.A., Hagstrom, J.E., Budker, V.G., and Trubetskoy, V.S., US Patent 6383811, 2002.
Trubetskoy, V.S., Hagstrom, J.E., Budker, V.G., Wolff, J.A., Rozema, D.B., and Monahan, S.D., US Patent 7033607, 2006.
Wolff, J.A., Hagstrom, J.E., Budker, V.G., and Trubetskoy, V.S., US Patent 6881576, 2002.
Wolff, J.A., Hagstrom, J.E., Budker, V.G., and Trubetskoy, V.S., US Patent 6794189, 2002.
Wolff, J.A., Hagstrom, J.E., Budker, V.G., and Trubetskoy, V.S., US Patent 7524680, 2009.
Wolff, J.A., Trubetskoy, V.S., Loomis, A.G., Slattum, P.M., Monahan, S.D., Hagstrom, J.E., and Budker, V.G., US Patent 7396919, 2008.
Trubetskoy, V.S., Hagstrom, J.E., Budker, V.G., Wolff, J.A., Rozema, D.B., and Monahan, S.D., US Patent 7098032, 2005.
Trubetskoy, V.S., Hagstrom, J.E., Budker, V.G., Wolff, J.A., Rozema, D.B., and Monahan, S.D., US Patent 6919091, 2002.
Trubetskoy, V.S., Rozema, D.B., Monahan, S.D., Budker, V.G., Hagstrom, J.E., and Wolff, J.A., US Patent Application US20040162235A1, 2003.
Wakefield, D.H., Rozema, D.B., Wolff, J.A., Trubetskoy, V.S., Hagstrom, J.E., Budker, V.G., Klein, J., and Wong, S., US Patent 7470539, 2005 .
Rozema, D.B., Budker, V.G., Hagstrom, J.E., Trubetskoy, V.S., Wolff, J.A., Monahan, S.D., and Slattum, P.M., US Patent 7098030, 2004.
Chen, C.-K., Huang, P.-K., Law, W.-C., Chu, C.-H., Chen, N.-T., and Lo, L.-W., Int. J. Nanomed., 2020, vol. 15, p. 2131.
Trubetskoy, V.S., Loomis, A., Hagstrom, J.E., Budker, V.G., and Wolff, J.A., Nucleic Acids Res., 1999, vol. 27, p. 3090.
Trubetskoy, V.S., Wong, S.C., Subbotin, V., Budker, V.G., Loomis, A., Hagstrom, J.E., and Wolff, J.A., Gene Ther., 2003, vol. 10, p. 261.
Asayama, S., Nogawa, M., Takei, Y., Akaike, T., and Maruyama, A., Bioconjugate Chem., 1998, vol. 9, p. 476.
Koyama, Y., Yamashita, M., Iida-Tanaka, N., and Ito, T., Biomacromolecules, 2006, vol. 7, p. 1274.
Shew, C.-Y., Yoshikawa, K., Ito, T., Yoshihara, C., and Koyama, Y., Chem. Phys. Lett., 2007, vol. 446, p. 59.
Jeon, J. and Dobrynin, A.V., Macromolecules, 2005, vol. 38, p. 5300.
Jeon, J. and Dobrynin, A.V., J. Phys. Chem., 2006, vol. 110, p. 24652.
Bekturov, E.A., Frolova, V.A., Kudaibergenov, S.E., Schulz, R.C., and Zöller, J., Macromol. Chem., 1990, vol. 191, p. 457.
Shusharina, N.P., Zhulina, E.V., Dobrynin, A.V., and Rubinstein, M., Macromolecules, 2005, vol. 38, p. 8870.
Lin, W., Yan, L., Mu, C., Li, W., Zhang, M., and Zhu, Q., Polym. Int., 2002, vol. 51, p. 233.
Swain, P., Ronghe, A., Bhutani, U., and Majumdar, S., J. Phys. Chem. B, 2019, vol. 123, no. 5, p. 1186. https://doi.org/10.1021/acs.jpcb.8b11379
Goloub, T., Keizer, A., and Stuart, M.A.C., Macromolecules, 1999, vol. 32, no. 25, p. 8441.
Patrickios, C.S., Sharma, L.R., Armes, S.P., and Billingham, N.C., Langmuir, 1999, vol. 15, p. 1613.
Giebeler, E. and Stadler, R., Macromol. Chem. Phys., 1997, vol. 198, p. 3816.
Gohy, J.F., Creutz, S., Garcia, M., Mahltig, B., Stamm, M., and Jerome, R., Macromolecules, 2000, vol. 33, p. 6378.
Sun, J., Černoch, P., Völkel, A., Wei, Y., Ruokolainen, J., and Schlaad, H., Macromolecules, 2016, vol. 49, no. 15, p. 5494. https://doi.org/10.1021/acs.macromol.6b00817
Rodrígues-Hernándes, J. and Lecommandoux, S., J. Am. Chem. Soc., 2005, vol. 127, p. 2026.
Kudaibergenov, S.E. and Nuraje, N., Polymers, 2018, vol. 10, p. 1146.
Koseki, T., Kanto, R., Yonenuma, R., Nakabayashi, K., Furusawa, H., Yano, S., and Mori, H., React. Funct. Polym., 2019, vol. 150, 104540.
Rose, V.L., Mastrotto, F., and Mantovani, G., Polym. Chem., 2017, vol. 8, no. 2, p. 353.
Wang, R. and Lowe, A.B., J. Polym. Sci., Part A: Polym. Chem., 2007, vol. 45, p. 2468.
Izumrudov, V.A., Zelikin, A.N., Zhiryakova, M.V., Jaeger, W., and Bohrisch, J., J. Phys. Chem B, 2003, vol. 107, p. 7982.
Lam, J.K.W., Ma, Y., Lewis, A.L., Baldwin, T., and Stolnik, S., J. Controlled Release, 2004, vol. 100, p. 293.
Ahmed, M., Bhuchar, N., Ishihara, K., and Narain, R., Bioconjugate Chem., 2011, vol. 22, p. 1228.
Wang, J., Zhang, P.-C., Lu, H.-F., Ma, N., Mao, H.-Q., and Leong, K.W., J. Controlled Release, 2002, vol. 83, p. 157.
Ren, J., Jiang, X., Pan, D., and Mao, H.-Q., Biomacromolecules, 2010, vol. 11, p. 3432.
Danilovtseva, E.N., Krishnan, U.M., Pal’shin, V.A., and Annenkov, V.V., Polymers, 2017, vol. 9, p. 624.
Hughes, J.A. and Rao, G.A., Expert Opin. Drug Delivery, 2005, vol. 2, no. 1, p. 145.
Du, F.-S., Wang, Y., Zhang, R., and Li, Z.-C., Soft Matter, 2010, vol. 6, p. 835.
Gong, J.P., Soft Matter, 2010, vol. 6, p. 2583.
Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., Haque, Md.A., Nakajima, T., and Gong, J.P., Nat. Mater., 2013, vol. 12, p. 932.
Odent, J., Wallin, T.J., Pan, W., Kruemplestaedter, K., Shepherd, R.F., and Giannelis, E.P., Adv. Funct. Mater., 2017, vol. 27, 1701807.
Charaya, H., Li, X., Jen, N., and Chung, H.-J., Langmuir, 2018, vol. 35, no. 5, p. 1526.
Mariner, E., Haag, S.L., and Bernards, M.T., Biointerphases, 2019, vol. 14, 031002.
Luo, F., Sun, T.L., Nakajima, T., King, D.R., Kurokawa, T., Zhao, Y., Ihsan, A.B., Li, X., Guo, H., and Gong, J.P., Macromolecules, 2016, vol. 49, p. 2750.
King, D.R., Sun, T.L., Huang, Y., Kurokawa, T., Nanoyama, T., Crosby, A.J., and Gong, J.P., Mater. Horiz., 2015, vol. 2, p. 584.
Cui, K., Sun, T.L., Liang, X., Nakajima, K., Ye, Y.N., Chen, L., Kurokawa, T., and Gong, J.P., Phys. Rev. Lett., 2018, vol. 121, 185501.
Sun, T.L., Luo, F., Kurokawa, T., Karobi, S.N., Nakajima, T., and Gong, J.P., Soft Matter, 2015, vol. 11, p. 9355.
Sun, T.L., Luo, F., Hong, W., Cui, K., Huang, Y., Zang, H.J., King, D.R., Kurokawa, T., Nakajima, T., and Gong, J.P., Macromolecules, 2017, vol. 50p. 2923.
Sun, Y., Nan, D., Jin, H., and Qu, X., Polym. Test., 2020, vol. 81, 106283.
Means, A.K. and Grunlan, M.A., ACS Macro Lett., 2019, vol. 8, p. 705.
Li, X., Charaya, H., Tran, T.N.T., Lee, B., Cho, J.-Y., and Chung, H.-J., MRS Commun., 2018, p. 1.
Toleutay, G., Su, E., Kudaibergenov, S., and Okay, O., Colloid Polym. Sci., 2020, vol. 298, p. 273.
Ogawa, Y., Ogawa, K., Wang, B., and Kokufuta, E.A., Langmuir, 2001, vol. 17, p. 2670.
Goh, K.B., Li, H., and Lam, K.Y., ACS Appl. Bio Mater., 2018, vol. 1, no. 2, p. 318.
Kudaibergenov, S.E. and Dzhardimalieva, G.I., Polymers, 2020, vol. 12, p. 572.
Odent, J., Wallin, T.J., Pan, W., Kruemplestaedter, K., Shepherd, R.F., and Giannelis, E.P., Adv. Funct. Mater., 2017, vol. 27, 1701807.
Li, G., Hue, H., Gao, C., Zhang, F., and Jiang, S., Macromolecules, 2010, vol. 43, p. 14.
Paschke, S. and Lienkamp, K., ACS Appl. Polym. Mater., 2020, vol. 2, no. 2, p. 129.
Zheng, L., Sundaram, H.S., Wei, Z., Li, C., and Yuan, Z., React. Funct. Polym., 2017, vol. 118, p. 51.
Schonemann, E., Koc, J., Aldred, N., Clare, A.S., Laschewsky, A., Rosenhahn, A., and Wischerhoff, E., Macromol. Rapid Commun., 2020, vol. 41, 1900447.
Schlenoff, J.B., Langmuir, 2014, vol. 30, p. 9625.
Delgado, J.D. and Schlenoff, J.B., Macromolecules, 2017, vol. 50, p. 4454.
Straub, A.P., Asa, E., Zhang, W., Nguen, T.H., and Herzberg, M., Chem. Eng. J., 2020, vol. 382, 122865.
Zhang, W., Yang, Z., Kaufman, Y., and Bernstein, R., J. Colloid Interface Sci., 2018, vol. 517, p. 155.
Zhang, W., Cheng, W., Ziemann, E., Be’er, A., Lu, X., Elimelech, M., and Bernstein, R., J. Membr. Sci., 2018, vol. 565, p. 293.
Yang, Z., Saeki, D., Takagi, R., and Matsuyama, H., J. Membr. Sci., 2020, vol. 595, 117529.
Zhou, C., Zhao, J., Saem, S., Gill, U., Stover, H.D.H., and Moron-Mirabal, J., ACS Appl. Bio Mater., 2018, vol. 1, p. 1512.
Shih, Y.-J., Chang, Y., Quemener, D., Yang, H.-S., Jhong, J.-F., Ho, F.-M., Higuchi, A., and Chang, Y., Langmuir, 2014, vol. 30, p. 6489.
Azuma, T., Matsuhita, T., Manivel, V.A., Ekdahl, K.N., Teramura, Y., and Takai, M., J. Biomater. Sci., Polym. Ed., 2019, vol. 31, p. 679.
Xu, J.-P., Ji, J., Chen, W.-D., Fan, D.-Z., Sun, Y.-F., and Shen, J.-C., Eur. Polym. J., 2004, vol. 40, p. 291.
Sitnikova, T., Rakhnyanskaya, A., Yaroslavova, E., Melik-Nubarov, N., and Yaroslavov, A., Polym. Sci., Ser. A, 2013, vol. 55, p. 163.
Wei, H., Insin, N., Lee, J., Han, H.S., Cordero, J.M., Liu, W., and Bawendi, M.G., Nano Lett., 2012, vol. 12, p. 22.
Wei, H., Bruns, O.T., Chen, O., and Bawendi, M.G., Integr. Biol., 2013, vol. 5, p. 108.
Kim, D., Chae, M.K., Joo, H.J., Jeong, I.H., Cho, J.H., and Lee, C., Langmuir, 2012, vol. 28, p. 9634.
Qi, W., Ming, S., Zhao, M., and Tao, Z., Sci. Rep., 2015, vol. 5, p. 7774.
Tao, Z., Kaimin, C., and Hongchen, G., J. Phys. Chem. B, 2013, vol. 117, p. 14129.
Biehl, P., von der Luhe, M., Dutz, S., Schacher, F.H., Polymers, 2018, vol. 19, p. 91.
Matsumura, K. and Hyon, S.-H., Biomaterials, 2009, vol. 30, p. 4842.
Matsumura, K., Bae, J.Y., and Hyon, S.H., Cell Transplant>, 2010, vol. 19, p. 691.
Matsumura, K., Bae, J.Y., Kim, H.H., and Hyon, S.H., Cryobiology, 2011, vol. 63, p. 76.
Rajan, R., Jain, M., and Matsumura, K., J. Biomater. Sci., Polym. Ed., 2013, vol. 24, no. 15, p. 1767.
Matsumura, K., Hayashi, F., and Nagashima, T., J. Biomater. Sci., Polym. Ed., 2013, vol. 24, no. 15, p. 1484.
Watanabe, H., Kohaya, N., Kamoshita, M., Fujiwara, K., Matsumura, K., Hyon, S.-H., Ito, J., and Kashiwazaki, N., PLoS One, 2013, vol. 8, no. 12.
Jain, M., Rajan, R., Hyon, S.H., and Matsumura, K., Biomater. Sci., 2014, vol. 2, p. 308.
Ahmed, S., Hayashi, F., Nagashima, T., and Matsumura, K., Biomaterials, 2014, vol. 35, p. 6508.
Matsumura, K., Kim, H.H., and Hyon, S.-H., Curr. Nanosci., 2014, vol. 10, p. 222.
Shibao, Y., Fujiwara, K., Kawasaki, Y., Matsumura, K., Hyon, S.H., Ito, J., and Kashwazaki, N., Cryobiology, 2014, vol. 68, p. 200.
Rajan, R. and Matsumura, K., Cryobiol. Cryotechnol., 2014, vol. 60, p. 99.
Rajan, R. and Matsumura, K., J. Mater. Chem. B, 2015, vol. 3, p. 5683.
Rajan, R., Hayashi, F., Nagashima, T., and Matsumura, K., Biomacromolecules, 2016, vol. 17, p. 1882.
Matsumura, K., Kawamoto, K., Takeuchi, M., Yoshimura, S., Tanaka, D., and Hyon, S.-H., ACS Biomater. Sci. Eng., 2016, vol. 2, p. 1023.
Polge, C., Smith, A.U., and Parkes, A.S., Nature, 1949, vol. 164, no. 4172, p. 666.
Lovelock, J.E. and Bishop, M.W., Nature, 1959, vol. 183, no. 4672, p. 1394.
Zhao, J., Johnson, M., Fisher, R.B., Burke, N.A.D., and Stover, H.D.H., Langmuir, 2019, vol. 35, p. 295.
Stubbs, C., Lipecki, J., and Gibson, M.I., Biomacromolecules, 2017, vol. 18, p. 295.
Stubbs, C., Bailey, T.L., Murray, K., and Gibson, M.I., Biomacromolecules, 2017, vol. 21, p. 7.
Mitchell, D.E., Lilliman, M., Spain, S.G., and Gibson, M.I., Biomater. Sci., 2014, vol. 2, p. 1787.
Biggs, C.I., Stubbs, C., Graham, B., Fayter, A.E.R., Hasan, M., and Gibson, M.I., Macromol. Biosci., 2019, vol. 19, 1900082.
Li, X., Charaya, H., Bernard, G.M., Elliott, J.A.W., Michaelis, V.K., Lee, B., and Chung, H.-J., Macromolecules, 2018, vol. 51, p. 2723.
Jain, M. and Matsumura, K., Mater. Sci. Eng., C, 2016, vol. 69, p. 1273.
Ahmed, S., Fujita, S., and Matsumura, K., Nanoscale, 2016, vol. 8, p. 15888.
Ahmed, S. and Matsumura, K., Cryobiol. Cryotechnol., 2016, vol. 62, p. 143.
Shanavas, A., Jain, N.K., Kaur, N., Thummuri, D., Prasanna, M., Prasad, R., Naidu, V.G.N., Bahadur, D., and Srivastava, R., ACS Omega, 2019, vol. 4, p. 19614.
Kudaibergenov, S.E., Nuraje, N., and Khutoryanskiy, V.V., Soft Matter, 2012, vol. 8, p. 9302.
Xu, W., Rudov, A.A., Schroeder, R., Portnov, I.V., Richtering, W., Potemkin, I.I., and Pich, A., Biomacromolecules, 2019, vol. 20, p. 1578.
Gelissen, A.P.H., Scotti, A., Turnhoff, S.K., Janssen, C., Radulescu, A., Pich, A., Rudov, A.A., Potemkin, I.I., and Richtering, W., Soft Matter, 2018, vol. 14, p. 4287.
Chen, Y. and Sun, P., Polymers, 2019, vol. 11, p. 285.
Barcellona, M., Johnson, N., and Bernards, M.T., Langmuir, 2015, vol. 31, p. 13402.
Ng, L.-T. and Ng, K.-S., Radiat. Phys. Chem., 2008, vol. 77, p. 192.
Estrada-Villegas, G.M., González-Pérez, G., and Bucio, E., Iran. Polym. J., 2019, vol. 28, p. 639.
Jin, Q., Chen, Y., Wang, Y., and Ji, J., Colloids Surf., B, 2014, vol. 124, p. 80.
Wagner, A.M., Spencer, D.S., and Peppas, N.A., J. Appl. Polym. Sci., 2018, vol. 135, p. 46154.
Phan, Q.T., Patil, M.P., Tu, T.T.K., Kim, G.-D., and Lim, K.T., React. Funct. Polym., 2020, vol. 147, 104463.
Johnson, R.P., Uthaman, S., Augustine, R., Zhang, Y., Jin, H., Choi, C.I., Park, I.-K., and Kim, I., React. Funct. Polym., 2017, vol. 119, p. 47.
Wan, L., Tan, X., Sun, T., Sun, Y., Luo, J., and Zhang, H., Mater. Sci. Eng., C, 2020, vol. 112, 110886.
Sun, H., Chang, M.Y., Cheng, W.-I., Wang, Q., Commisso, A., Capeling, M., Wu, Y., and Cheng, C., Acta Biomater., 2017, vol. 64, p. 290.
Peng, S., Ouyang, B., Men, Y., Du, Y., Cao, Y., Xie, R., Pang, Z., Shen, S., and Yang, W., Biomaterials, 2020, vol. 231, 119680.
Johner, A and Joanny, J.F., Eur. Phys. J. E, 2018, vol. 41, p. 78
Samanta, H.S., Chakraborty, D., and Thirumalai. D., J. Chem. Phys., 2018, vol. 149, 163323. https://doi.org/10.1063/1.5035428
Santos, J., Iglesias, V., Santos-Suárez, J., Mangiagalli, M., Brocca, S., Pallarès, I., and Ventura, S., Cells, 2020, vol. 9, p. 145.
Sun, J., Deng, C., Chen, X., Yu, H., Tian, H., Sun, J., and Jing, X., Biomacromolecules, 2007, vol. 8, p. 1013.
Chen, L., Chen, T., Fang, W., Wen, Y., Lin, S., Lin, J., and Cai, C., Biomacromolecules, 2013, vol. 14, p. 4320.
Sun, J., Černoch, P., Völkel, A., Wei, Y., Ruokolainen, J., and Schlaad, H., Macromolecules, 2016, vol. 49, no. 15, p. 5494. https://doi.org/10.1021/acs.macromol.6b00817
Jain, M. and Matsumura, K., Mater. Sci. Eng., C, 2016, vol. 69, p. 1273.
Peppas, N.A., Hilt, J.Z., Khademhosseini, A., and Langer, R., Adv. Mater., 2016, vol. 18, p. 1345.
Memic, A., Colombani, T., Eggermont, L.J., Razaeeyazdi, M., Steingold, J., Rogers, Z.J., Navare, K.J., Mohammed, H.S., and Bencherif, S.A., Adv. Ther., 2019, vol. 2, 1800114.
Kudaibergenov, S.E., Gels, 2019, vol. 5, p. 8.
ACKNOWLEDGMENTS
S.E.K. acknowledges Prof. Vitaliy V. Khutoryanskiy from University of Reading (UK) for careful editing of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. IRN AP08855552).
Rights and permissions
About this article
Cite this article
Kudaibergenov, S.E. Advances in Synthetic Polyampholytes for Biotechnology and Medicine. Ref. J. Chem. 10, 12–39 (2020). https://doi.org/10.1134/S2079978020010021
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2079978020010021