Skip to main content
Log in

Advances in Synthetic Polyampholytes for Biotechnology and Medicine

  • REVIEW ARTICLE
  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

Polyampholytes are unique macromolecules containing acid/base or anionic/cationic groups in the main or side chains that mimic the behavior of proteins, polypeptides or polynucleotides. Water-soluble and water-swelling polyampholytes exhibit salt-tolerant, thermal-resistant, shear-stable, self-healing, anti-fouling, self-assembling, and stimuli-responsive properties that provide broad impact as structural biomaterials, drug delivery and chemo-mechanical systems, biosensors, energy storage devices, supercapacitors, actuators etc. In this review we mainly pay attention to fundamental and applied aspects of synthetic polyampholytes in the context of biotechnology and medicine. Among the outlined topics the role of linear and crosslinked amphoteric macromolecules as well as macromolecular complexes of polyampholytes with polyelectrolytes, DNA, proteins and drugs is highlighted. Cryoprotective behavior of synthetic polyampholytes is shown with respect to cell preservation and viability. Injectable, soft, flexible, stretchable, self-healing and stimuli-responsive physically or chemically crosslinked polyampholyte gels that are promising materials for fabrication of artificial tissue, wound dressing, cartilage, cardiovascular, bone defect repair, regenerative medicine and tissue engineering scaffolds, soft actuators and sensors, soft robotics are also in the eyeshot of this review. Hierarchically structured multi-responsive polyampholytic gels, multilayered films and membranes possessing encapsulation–release and “on–off” behaviors are considered as antibiofouling, anticoagulation, and drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

REFERENCES

  1. Ruff, K.M., Roberts, S., Chilkoti, A., and Pappu, R.V., J. Mol. Biol., 2018, vol. 430, p. 4619.

    Article  CAS  PubMed  Google Scholar 

  2. Batchelor, M. and Paci, E., J. Phys. Chem. B, 2018, vol. 122, p. 11784.

    Article  CAS  PubMed  Google Scholar 

  3. Grinberg, V.Y., Burova, T.V., Grinberg, N.V., Alvarez-Lorenzo, C., and Khokhlov, A.R., Polymer, 2019, vol. 179, 121617.

    Article  CAS  Google Scholar 

  4. Xia, Y., Gao, M., Chen, Y., Jia, X., and Liang, D., Macromol. Chem. Phys., 2011, vol. 212, p. 2268.

    Article  CAS  Google Scholar 

  5. Sun, J., Černoch, P., Völkel, A., Wei, Y., Ruokolainen, J., and Schlaad, H., Macromolecules, 2016, vol. 49, no. 15, p. 5494.

    Article  CAS  Google Scholar 

  6. Dimassi, S., Tabary, N., Chai, F., Blanchemain, N., and Martel, B., Carbohydr. Polym., 2018, vol. 202, p. 382.

    Article  CAS  PubMed  Google Scholar 

  7. Zurick, K.M. and Bernards, M., J. Appl. Polym. Sci., 2014, vol. 131, p. 40069.

    Article  CAS  Google Scholar 

  8. Bernards, M. and He, Y., J. Biomater. Sci., Polym. Ed., 2014, vol. 25, p. 1479.

    Article  CAS  Google Scholar 

  9. Matsumura, K., Rajan, R., Ahmed, S., and Jain, M., in Biopolymers for Medical Applications, Ruso, J.M., and Messina, P.V., Eds., Boca Raton: CRC, 2017, p. 182.

    Google Scholar 

  10. Zheng, L., Sundaram, H.S., Wei, Z., Li, C., and Yuan, Z., React. Funct. Polym., 2017, vol. 118, p. 51.

    Article  CAS  Google Scholar 

  11. Kudaibergenov, S.E., Polyampholytes: Synthesis, Characterization and Application, New York: Kluwer, 2002.

    Book  Google Scholar 

  12. Lowe, A.B. and McCormick, C.L., Chem. Rev., 2002, vol. 102, no. 11, p. 4177.

    Article  CAS  PubMed  Google Scholar 

  13. Kudaibergenov, S.E., Adv. Polym. Sci., 1999, vol. 144, p. 115.

    Article  CAS  Google Scholar 

  14. Kudaibergenov, S.E., in Encyclopedia Polymer Science and Technology, Hoboken, NJ: Wiley, 2008, p. 1.

    Google Scholar 

  15. Kudaibergenov, S., Jaeger, W., and Laschewsky, A., Adv. Polym. Sci., 2006, vol. 201, p. 157.

    Article  CAS  Google Scholar 

  16. Laschewsky, A., Polymers, 2014, vol. 6, no. 5, p. 1544.

    Article  CAS  Google Scholar 

  17. Singh, P.K., Singh, V.K., and Singh, M., e-Polymers, 2007, vol. 7, 030.

  18. Zhou, W.R., Xu, X.J., and Yang, W., Prog. Chem., 2013, vol. 25, no. 6, p. 1023.

    Google Scholar 

  19. Bernards, M. and He, Y., J. Biomater. Sci., Polym. Ed., 2014, vol. 25, nos. 14–15, p. 1479.

    Article  CAS  Google Scholar 

  20. Liu, H. and Zhou, J., Prog. Chem., 2012, vol. 24, no. 11, p. 2187.

    CAS  Google Scholar 

  21. Ohno, H., Yoshizawa-Fujita, M., and Ogihara, W., in Electrochemical Aspects of Ionic Liquids, Ohno, H., Ed., Hoboken, NJ: Wiley, 2011, p. 433.

    Book  Google Scholar 

  22. Fouillet, C.C.J., Greaves, T.L., Quinn, J.F., Davis, T.P., Adamcik, T., Sani, M.A., Separovic, F., Drummond, C.J., and Mezzenga, R., Macromolecules, 2017, vol. 50, p. 8965.

    Article  CAS  Google Scholar 

  23. Ramos, D.P., Sarjinsky, S., Alizadehgiashi, M., Moebus, J., and Kumacheva, E., ACS Omega, 2019, vol. 4, p. 8795.

    Article  CAS  Google Scholar 

  24. Kudaibergenov, S.E., Shayakhmetov, Sh.Sh., Rafikov, S.R., and Bekturov, E.A., Dokl. Acad. Nauk USSR, 1979, vol. 246, no. 1, p. 147.

    Google Scholar 

  25. Kudaibergenov, S.E., Shayakhmetov, Sh.Sh., and Bekturov, E.A., Vysokomol. Soedin., Ser. B, 1980, vol. 22, p. 91.

    CAS  Google Scholar 

  26. Uversky, V.N., Front. Phys., 2019, vol. 17. https://doi.org/10.3389/fphy.2019.00010

  27. Van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., Kim, P.M., Kriwacki, R.W., Oldfield, C.J., Pappu, R.V., Tompa, P., Uversky, V.N., Wright, P.E., and Babu, M.M., Chem. Rev., 2014, vol. 114, p. 6589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wright, P.E. and Dyson, H.J., Nat. Rev. Mol. Cell Biol., 2015, vol. 16, p. 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oldfield, C.J. and Dunker, A.K., Ann. Rev. Biochem., 2014, vol. 83, p. 553.

    Article  CAS  PubMed  Google Scholar 

  30. Das, R.K. and Pappu, R.V., Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, p. 13392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bergel, D.H., J. Physiol., 1961, vol. 156, p. 445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Showalter, A.M., Plant Cell, 1993, vol. 5, p. 9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin, Y.H. and Chan, H.S., Biophys. J., 2017, vol. 112, p. 2043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holehouse, A.S., Das, R.K., Ahad, J.N., Richardson, M.O.G., and Pappu, R.V., Biophys. J., 2017, vol. 112, no. 1, p. 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bertin, A., Adv. Polym. Sci., 2013, vol. 256, p. 103.

    Article  CAS  Google Scholar 

  36. Kabanov, A.V., Astafyeva, I.V., Chikindas, M.L., Rosenblat, G.F., Kiselev, V.I., Severin, E.S., and Kabanov, V.A., Biopolymers, 1991, vol. 31, p. 1437.

    Article  CAS  PubMed  Google Scholar 

  37. Kabanov, A.V. and Kabanov, V.A., Bioconjugate Chem., 1995, vol. 6, p. 7.

    Article  CAS  Google Scholar 

  38. Izumrudov, V.A., Zhiryakova, M.V., and Kudaibergenov, S.E., Biopolymers, 1999, vol. 52, p. 94.

    Article  CAS  PubMed  Google Scholar 

  39. Izumrudov, V.A., Zelikin, A.N., Zhiryakova, M.V., Jaeger, W., and Bohrish, J., J. Phys. Chem. B, 2003, vol. 107, p. 7982.

    Article  CAS  Google Scholar 

  40. Wolff, J.A., Hagstrom, J.E., Budker, V.G., and Trubetskoy, V.S., US Patent 6383811, 2002.

  41. Trubetskoy, V.S., Hagstrom, J.E., Budker, V.G., Wolff, J.A., Rozema, D.B., and Monahan, S.D., US Patent 7033607, 2006.

  42. Wolff, J.A., Hagstrom, J.E., Budker, V.G., and Trubetskoy, V.S., US Patent 6881576, 2002.

  43. Wolff, J.A., Hagstrom, J.E., Budker, V.G., and Trubetskoy, V.S., US Patent 6794189, 2002.

  44. Wolff, J.A., Hagstrom, J.E., Budker, V.G., and Trubetskoy, V.S., US Patent 7524680, 2009.

  45. Wolff, J.A., Trubetskoy, V.S., Loomis, A.G., Slattum, P.M., Monahan, S.D., Hagstrom, J.E., and Budker, V.G., US Patent 7396919, 2008.

  46. Trubetskoy, V.S., Hagstrom, J.E., Budker, V.G., Wolff, J.A., Rozema, D.B., and Monahan, S.D., US Patent 7098032, 2005.

  47. Trubetskoy, V.S., Hagstrom, J.E., Budker, V.G., Wolff, J.A., Rozema, D.B., and Monahan, S.D., US Patent 6919091, 2002.

  48. Trubetskoy, V.S., Rozema, D.B., Monahan, S.D., Budker, V.G., Hagstrom, J.E., and Wolff, J.A., US Patent Application US20040162235A1, 2003.

  49. Wakefield, D.H., Rozema, D.B., Wolff, J.A., Trubetskoy, V.S., Hagstrom, J.E., Budker, V.G., Klein, J., and Wong, S., US Patent 7470539, 2005 .

  50. Rozema, D.B., Budker, V.G., Hagstrom, J.E., Trubetskoy, V.S., Wolff, J.A., Monahan, S.D., and Slattum, P.M., US Patent 7098030, 2004.

  51. Chen, C.-K., Huang, P.-K., Law, W.-C., Chu, C.-H., Chen, N.-T., and Lo, L.-W., Int. J. Nanomed., 2020, vol. 15, p. 2131.

    Article  CAS  Google Scholar 

  52. Trubetskoy, V.S., Loomis, A., Hagstrom, J.E., Budker, V.G., and Wolff, J.A., Nucleic Acids Res., 1999, vol. 27, p. 3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trubetskoy, V.S., Wong, S.C., Subbotin, V., Budker, V.G., Loomis, A., Hagstrom, J.E., and Wolff, J.A., Gene Ther., 2003, vol. 10, p. 261.

    Article  CAS  PubMed  Google Scholar 

  54. Asayama, S., Nogawa, M., Takei, Y., Akaike, T., and Maruyama, A., Bioconjugate Chem., 1998, vol. 9, p. 476.

    Article  CAS  Google Scholar 

  55. Koyama, Y., Yamashita, M., Iida-Tanaka, N., and Ito, T., Biomacromolecules, 2006, vol. 7, p. 1274.

    Article  CAS  PubMed  Google Scholar 

  56. Shew, C.-Y., Yoshikawa, K., Ito, T., Yoshihara, C., and Koyama, Y., Chem. Phys. Lett., 2007, vol. 446, p. 59.

    Article  CAS  Google Scholar 

  57. Jeon, J. and Dobrynin, A.V., Macromolecules, 2005, vol. 38, p. 5300.

    Article  CAS  Google Scholar 

  58. Jeon, J. and Dobrynin, A.V., J. Phys. Chem., 2006, vol. 110, p. 24652.

    Article  CAS  Google Scholar 

  59. Bekturov, E.A., Frolova, V.A., Kudaibergenov, S.E., Schulz, R.C., and Zöller, J., Macromol. Chem., 1990, vol. 191, p. 457.

    Article  CAS  Google Scholar 

  60. Shusharina, N.P., Zhulina, E.V., Dobrynin, A.V., and Rubinstein, M., Macromolecules, 2005, vol. 38, p. 8870.

    Article  CAS  Google Scholar 

  61. Lin, W., Yan, L., Mu, C., Li, W., Zhang, M., and Zhu, Q., Polym. Int., 2002, vol. 51, p. 233.

    Article  CAS  Google Scholar 

  62. Swain, P., Ronghe, A., Bhutani, U., and Majumdar, S., J. Phys. Chem. B, 2019, vol. 123, no. 5, p. 1186. https://doi.org/10.1021/acs.jpcb.8b11379

    Article  CAS  PubMed  Google Scholar 

  63. Goloub, T., Keizer, A., and Stuart, M.A.C., Macromolecules, 1999, vol. 32, no. 25, p. 8441.

    Article  CAS  Google Scholar 

  64. Patrickios, C.S., Sharma, L.R., Armes, S.P., and Billingham, N.C., Langmuir, 1999, vol. 15, p. 1613.

    Article  CAS  Google Scholar 

  65. Giebeler, E. and Stadler, R., Macromol. Chem. Phys., 1997, vol. 198, p. 3816.

    Article  Google Scholar 

  66. Gohy, J.F., Creutz, S., Garcia, M., Mahltig, B., Stamm, M., and Jerome, R., Macromolecules, 2000, vol. 33, p. 6378.

    Article  CAS  Google Scholar 

  67. Sun, J., Černoch, P., Völkel, A., Wei, Y., Ruokolainen, J., and Schlaad, H., Macromolecules, 2016, vol. 49, no. 15, p. 5494. https://doi.org/10.1021/acs.macromol.6b00817

    Article  CAS  Google Scholar 

  68. Rodrígues-Hernándes, J. and Lecommandoux, S., J. Am. Chem. Soc., 2005, vol. 127, p. 2026.

    Article  CAS  Google Scholar 

  69. Kudaibergenov, S.E. and Nuraje, N., Polymers, 2018, vol. 10, p. 1146.

    Article  PubMed Central  CAS  Google Scholar 

  70. Koseki, T., Kanto, R., Yonenuma, R., Nakabayashi, K., Furusawa, H., Yano, S., and Mori, H., React. Funct. Polym., 2019, vol. 150, 104540.

    Article  CAS  Google Scholar 

  71. Rose, V.L., Mastrotto, F., and Mantovani, G., Polym. Chem., 2017, vol. 8, no. 2, p. 353.

    Article  CAS  Google Scholar 

  72. Wang, R. and Lowe, A.B., J. Polym. Sci., Part A: Polym. Chem., 2007, vol. 45, p. 2468.

    Article  CAS  Google Scholar 

  73. Izumrudov, V.A., Zelikin, A.N., Zhiryakova, M.V., Jaeger, W., and Bohrisch, J., J. Phys. Chem B, 2003, vol. 107, p. 7982.

    Article  CAS  Google Scholar 

  74. Lam, J.K.W., Ma, Y., Lewis, A.L., Baldwin, T., and Stolnik, S., J. Controlled Release, 2004, vol. 100, p. 293.

    Article  CAS  Google Scholar 

  75. Ahmed, M., Bhuchar, N., Ishihara, K., and Narain, R., Bioconjugate Chem., 2011, vol. 22, p. 1228.

    Article  CAS  Google Scholar 

  76. Wang, J., Zhang, P.-C., Lu, H.-F., Ma, N., Mao, H.-Q., and Leong, K.W., J. Controlled Release, 2002, vol. 83, p. 157.

    Article  CAS  Google Scholar 

  77. Ren, J., Jiang, X., Pan, D., and Mao, H.-Q., Biomacromolecules, 2010, vol. 11, p. 3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Danilovtseva, E.N., Krishnan, U.M., Pal’shin, V.A., and Annenkov, V.V., Polymers, 2017, vol. 9, p. 624.

    Article  PubMed Central  CAS  Google Scholar 

  79. Hughes, J.A. and Rao, G.A., Expert Opin. Drug Delivery, 2005, vol. 2, no. 1, p. 145.

    Article  CAS  Google Scholar 

  80. Du, F.-S., Wang, Y., Zhang, R., and Li, Z.-C., Soft Matter, 2010, vol. 6, p. 835.

    Article  CAS  Google Scholar 

  81. Gong, J.P., Soft Matter, 2010, vol. 6, p. 2583.

    Article  CAS  Google Scholar 

  82. Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., Haque, Md.A., Nakajima, T., and Gong, J.P., Nat. Mater., 2013, vol. 12, p. 932.

    Article  CAS  PubMed  Google Scholar 

  83. Odent, J., Wallin, T.J., Pan, W., Kruemplestaedter, K., Shepherd, R.F., and Giannelis, E.P., Adv. Funct. Mater., 2017, vol. 27, 1701807.

    Article  CAS  Google Scholar 

  84. Charaya, H., Li, X., Jen, N., and Chung, H.-J., Langmuir, 2018, vol. 35, no. 5, p. 1526.

    Article  PubMed  CAS  Google Scholar 

  85. Mariner, E., Haag, S.L., and Bernards, M.T., Biointerphases, 2019, vol. 14, 031002.

    Article  CAS  PubMed  Google Scholar 

  86. Luo, F., Sun, T.L., Nakajima, T., King, D.R., Kurokawa, T., Zhao, Y., Ihsan, A.B., Li, X., Guo, H., and Gong, J.P., Macromolecules, 2016, vol. 49, p. 2750.

    Article  CAS  Google Scholar 

  87. King, D.R., Sun, T.L., Huang, Y., Kurokawa, T., Nanoyama, T., Crosby, A.J., and Gong, J.P., Mater. Horiz., 2015, vol. 2, p. 584.

    Article  CAS  Google Scholar 

  88. Cui, K., Sun, T.L., Liang, X., Nakajima, K., Ye, Y.N., Chen, L., Kurokawa, T., and Gong, J.P., Phys. Rev. Lett., 2018, vol. 121, 185501.

    Article  PubMed  Google Scholar 

  89. Sun, T.L., Luo, F., Kurokawa, T., Karobi, S.N., Nakajima, T., and Gong, J.P., Soft Matter, 2015, vol. 11, p. 9355.

    Article  CAS  PubMed  Google Scholar 

  90. Sun, T.L., Luo, F., Hong, W., Cui, K., Huang, Y., Zang, H.J., King, D.R., Kurokawa, T., Nakajima, T., and Gong, J.P., Macromolecules, 2017, vol. 50p. 2923.

    Article  CAS  Google Scholar 

  91. Sun, Y., Nan, D., Jin, H., and Qu, X., Polym. Test., 2020, vol. 81, 106283.

    Article  CAS  Google Scholar 

  92. Means, A.K. and Grunlan, M.A., ACS Macro Lett., 2019, vol. 8, p. 705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, X., Charaya, H., Tran, T.N.T., Lee, B., Cho, J.-Y., and Chung, H.-J., MRS Commun., 2018, p. 1.

  94. Toleutay, G., Su, E., Kudaibergenov, S., and Okay, O., Colloid Polym. Sci., 2020, vol. 298, p. 273.

    Article  CAS  Google Scholar 

  95. Ogawa, Y., Ogawa, K., Wang, B., and Kokufuta, E.A., Langmuir, 2001, vol. 17, p. 2670.

    Article  CAS  Google Scholar 

  96. Goh, K.B., Li, H., and Lam, K.Y., ACS Appl. Bio Mater., 2018, vol. 1, no. 2, p. 318.

    Article  CAS  PubMed  Google Scholar 

  97. Kudaibergenov, S.E. and Dzhardimalieva, G.I., Polymers, 2020, vol. 12, p. 572.

    Article  CAS  PubMed Central  Google Scholar 

  98. Odent, J., Wallin, T.J., Pan, W., Kruemplestaedter, K., Shepherd, R.F., and Giannelis, E.P., Adv. Funct. Mater., 2017, vol. 27, 1701807.

    Article  CAS  Google Scholar 

  99. Li, G., Hue, H., Gao, C., Zhang, F., and Jiang, S., Macromolecules, 2010, vol. 43, p. 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paschke, S. and Lienkamp, K., ACS Appl. Polym. Mater., 2020, vol. 2, no. 2, p. 129.

    Article  CAS  Google Scholar 

  101. Zheng, L., Sundaram, H.S., Wei, Z., Li, C., and Yuan, Z., React. Funct. Polym., 2017, vol. 118, p. 51.

    Article  CAS  Google Scholar 

  102. Schonemann, E., Koc, J., Aldred, N., Clare, A.S., Laschewsky, A., Rosenhahn, A., and Wischerhoff, E., Macromol. Rapid Commun., 2020, vol. 41, 1900447.

    Article  CAS  Google Scholar 

  103. Schlenoff, J.B., Langmuir, 2014, vol. 30, p. 9625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Delgado, J.D. and Schlenoff, J.B., Macromolecules, 2017, vol. 50, p. 4454.

    Article  CAS  Google Scholar 

  105. Straub, A.P., Asa, E., Zhang, W., Nguen, T.H., and Herzberg, M., Chem. Eng. J., 2020, vol. 382, 122865.

    Article  CAS  Google Scholar 

  106. Zhang, W., Yang, Z., Kaufman, Y., and Bernstein, R., J. Colloid Interface Sci., 2018, vol. 517, p. 155.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, W., Cheng, W., Ziemann, E., Be’er, A., Lu, X., Elimelech, M., and Bernstein, R., J. Membr. Sci., 2018, vol. 565, p. 293.

    Article  CAS  Google Scholar 

  108. Yang, Z., Saeki, D., Takagi, R., and Matsuyama, H., J. Membr. Sci., 2020, vol. 595, 117529.

    Article  CAS  Google Scholar 

  109. Zhou, C., Zhao, J., Saem, S., Gill, U., Stover, H.D.H., and Moron-Mirabal, J., ACS Appl. Bio Mater., 2018, vol. 1, p. 1512.

    Article  CAS  PubMed  Google Scholar 

  110. Shih, Y.-J., Chang, Y., Quemener, D., Yang, H.-S., Jhong, J.-F., Ho, F.-M., Higuchi, A., and Chang, Y., Langmuir, 2014, vol. 30, p. 6489.

    Article  CAS  PubMed  Google Scholar 

  111. Azuma, T., Matsuhita, T., Manivel, V.A., Ekdahl, K.N., Teramura, Y., and Takai, M., J. Biomater. Sci., Polym. Ed., 2019, vol. 31, p. 679.

    Article  CAS  Google Scholar 

  112. Xu, J.-P., Ji, J., Chen, W.-D., Fan, D.-Z., Sun, Y.-F., and Shen, J.-C., Eur. Polym. J., 2004, vol. 40, p. 291.

    Article  CAS  Google Scholar 

  113. Sitnikova, T., Rakhnyanskaya, A., Yaroslavova, E., Melik-Nubarov, N., and Yaroslavov, A., Polym. Sci., Ser. A, 2013, vol. 55, p. 163.

    Article  CAS  Google Scholar 

  114. Wei, H., Insin, N., Lee, J., Han, H.S., Cordero, J.M., Liu, W., and Bawendi, M.G., Nano Lett., 2012, vol. 12, p. 22.

    Article  CAS  PubMed  Google Scholar 

  115. Wei, H., Bruns, O.T., Chen, O., and Bawendi, M.G., Integr. Biol., 2013, vol. 5, p. 108.

    Article  CAS  Google Scholar 

  116. Kim, D., Chae, M.K., Joo, H.J., Jeong, I.H., Cho, J.H., and Lee, C., Langmuir, 2012, vol. 28, p. 9634.

    Article  CAS  PubMed  Google Scholar 

  117. Qi, W., Ming, S., Zhao, M., and Tao, Z., Sci. Rep., 2015, vol. 5, p. 7774.

    Article  CAS  Google Scholar 

  118. Tao, Z., Kaimin, C., and Hongchen, G., J. Phys. Chem. B, 2013, vol. 117, p. 14129.

    Article  CAS  Google Scholar 

  119. Biehl, P., von der Luhe, M., Dutz, S., Schacher, F.H., Polymers, 2018, vol. 19, p. 91.

    Article  CAS  Google Scholar 

  120. Matsumura, K. and Hyon, S.-H., Biomaterials, 2009, vol. 30, p. 4842.

    Article  CAS  PubMed  Google Scholar 

  121. Matsumura, K., Bae, J.Y., and Hyon, S.H., Cell Transplant>, 2010, vol. 19, p. 691.

    Article  PubMed  Google Scholar 

  122. Matsumura, K., Bae, J.Y., Kim, H.H., and Hyon, S.H., Cryobiology, 2011, vol. 63, p. 76.

    Article  CAS  PubMed  Google Scholar 

  123. Rajan, R., Jain, M., and Matsumura, K., J. Biomater. Sci., Polym. Ed., 2013, vol. 24, no. 15, p. 1767.

    Article  CAS  Google Scholar 

  124. Matsumura, K., Hayashi, F., and Nagashima, T., J. Biomater. Sci., Polym. Ed., 2013, vol. 24, no. 15, p. 1484.

    Article  CAS  Google Scholar 

  125. Watanabe, H., Kohaya, N., Kamoshita, M., Fujiwara, K., Matsumura, K., Hyon, S.-H., Ito, J., and Kashiwazaki, N., PLoS One, 2013, vol. 8, no. 12.

  126. Jain, M., Rajan, R., Hyon, S.H., and Matsumura, K., Biomater. Sci., 2014, vol. 2, p. 308.

    Article  CAS  PubMed  Google Scholar 

  127. Ahmed, S., Hayashi, F., Nagashima, T., and Matsumura, K., Biomaterials, 2014, vol. 35, p. 6508.

    Article  CAS  PubMed  Google Scholar 

  128. Matsumura, K., Kim, H.H., and Hyon, S.-H., Curr. Nanosci., 2014, vol. 10, p. 222.

    Article  CAS  Google Scholar 

  129. Shibao, Y., Fujiwara, K., Kawasaki, Y., Matsumura, K., Hyon, S.H., Ito, J., and Kashwazaki, N., Cryobiology, 2014, vol. 68, p. 200.

    Article  CAS  PubMed  Google Scholar 

  130. Rajan, R. and Matsumura, K., Cryobiol. Cryotechnol., 2014, vol. 60, p. 99.

    Google Scholar 

  131. Rajan, R. and Matsumura, K., J. Mater. Chem. B, 2015, vol. 3, p. 5683.

    Article  CAS  PubMed  Google Scholar 

  132. Rajan, R., Hayashi, F., Nagashima, T., and Matsumura, K., Biomacromolecules, 2016, vol. 17, p. 1882.

    Article  CAS  PubMed  Google Scholar 

  133. Matsumura, K., Kawamoto, K., Takeuchi, M., Yoshimura, S., Tanaka, D., and Hyon, S.-H., ACS Biomater. Sci. Eng., 2016, vol. 2, p. 1023.

    Article  CAS  PubMed  Google Scholar 

  134. Polge, C., Smith, A.U., and Parkes, A.S., Nature, 1949, vol. 164, no. 4172, p. 666.

    Article  CAS  PubMed  Google Scholar 

  135. Lovelock, J.E. and Bishop, M.W., Nature, 1959, vol. 183, no. 4672, p. 1394.

    Article  CAS  PubMed  Google Scholar 

  136. Zhao, J., Johnson, M., Fisher, R.B., Burke, N.A.D., and Stover, H.D.H., Langmuir, 2019, vol. 35, p. 295.

    Google Scholar 

  137. Stubbs, C., Lipecki, J., and Gibson, M.I., Biomacromolecules, 2017, vol. 18, p. 295.

    Article  CAS  PubMed  Google Scholar 

  138. Stubbs, C., Bailey, T.L., Murray, K., and Gibson, M.I., Biomacromolecules, 2017, vol. 21, p. 7.

    Article  CAS  Google Scholar 

  139. Mitchell, D.E., Lilliman, M., Spain, S.G., and Gibson, M.I., Biomater. Sci., 2014, vol. 2, p. 1787.

    Article  CAS  PubMed  Google Scholar 

  140. Biggs, C.I., Stubbs, C., Graham, B., Fayter, A.E.R., Hasan, M., and Gibson, M.I., Macromol. Biosci., 2019, vol. 19, 1900082.

    Article  CAS  Google Scholar 

  141. Li, X., Charaya, H., Bernard, G.M., Elliott, J.A.W., Michaelis, V.K., Lee, B., and Chung, H.-J., Macromolecules, 2018, vol. 51, p. 2723.

    Article  CAS  Google Scholar 

  142. Jain, M. and Matsumura, K., Mater. Sci. Eng., C, 2016, vol. 69, p. 1273.

    Article  CAS  Google Scholar 

  143. Ahmed, S., Fujita, S., and Matsumura, K., Nanoscale, 2016, vol. 8, p. 15888.

    Article  CAS  PubMed  Google Scholar 

  144. Ahmed, S. and Matsumura, K., Cryobiol. Cryotechnol., 2016, vol. 62, p. 143.

    Google Scholar 

  145. Shanavas, A., Jain, N.K., Kaur, N., Thummuri, D., Prasanna, M., Prasad, R., Naidu, V.G.N., Bahadur, D., and Srivastava, R., ACS Omega, 2019, vol. 4, p. 19614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kudaibergenov, S.E., Nuraje, N., and Khutoryanskiy, V.V., Soft Matter, 2012, vol. 8, p. 9302.

    Article  CAS  Google Scholar 

  147. Xu, W., Rudov, A.A., Schroeder, R., Portnov, I.V., Richtering, W., Potemkin, I.I., and Pich, A., Biomacromolecules, 2019, vol. 20, p. 1578.

    Article  CAS  PubMed  Google Scholar 

  148. Gelissen, A.P.H., Scotti, A., Turnhoff, S.K., Janssen, C., Radulescu, A., Pich, A., Rudov, A.A., Potemkin, I.I., and Richtering, W., Soft Matter, 2018, vol. 14, p. 4287.

    Article  CAS  PubMed  Google Scholar 

  149. Chen, Y. and Sun, P., Polymers, 2019, vol. 11, p. 285.

    Article  PubMed Central  CAS  Google Scholar 

  150. Barcellona, M., Johnson, N., and Bernards, M.T., Langmuir, 2015, vol. 31, p. 13402.

    Article  CAS  PubMed  Google Scholar 

  151. Ng, L.-T. and Ng, K.-S., Radiat. Phys. Chem., 2008, vol. 77, p. 192.

    Article  CAS  Google Scholar 

  152. Estrada-Villegas, G.M., González-Pérez, G., and Bucio, E., Iran. Polym. J., 2019, vol. 28, p. 639.

    Article  CAS  Google Scholar 

  153. Jin, Q., Chen, Y., Wang, Y., and Ji, J., Colloids Surf., B, 2014, vol. 124, p. 80.

    Article  CAS  Google Scholar 

  154. Wagner, A.M., Spencer, D.S., and Peppas, N.A., J. Appl. Polym. Sci., 2018, vol. 135, p. 46154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Phan, Q.T., Patil, M.P., Tu, T.T.K., Kim, G.-D., and Lim, K.T., React. Funct. Polym., 2020, vol. 147, 104463.

    Article  CAS  Google Scholar 

  156. Johnson, R.P., Uthaman, S., Augustine, R., Zhang, Y., Jin, H., Choi, C.I., Park, I.-K., and Kim, I., React. Funct. Polym., 2017, vol. 119, p. 47.

    Article  CAS  Google Scholar 

  157. Wan, L., Tan, X., Sun, T., Sun, Y., Luo, J., and Zhang, H., Mater. Sci. Eng., C, 2020, vol. 112, 110886.

    Article  CAS  Google Scholar 

  158. Sun, H., Chang, M.Y., Cheng, W.-I., Wang, Q., Commisso, A., Capeling, M., Wu, Y., and Cheng, C., Acta Biomater., 2017, vol. 64, p. 290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Peng, S., Ouyang, B., Men, Y., Du, Y., Cao, Y., Xie, R., Pang, Z., Shen, S., and Yang, W., Biomaterials, 2020, vol. 231, 119680.

    Article  CAS  PubMed  Google Scholar 

  160. Johner, A and Joanny, J.F., Eur. Phys. J. E, 2018, vol. 41, p. 78

  161. Samanta, H.S., Chakraborty, D., and Thirumalai. D., J. Chem. Phys., 2018, vol. 149, 163323. https://doi.org/10.1063/1.5035428

    Article  CAS  PubMed  Google Scholar 

  162. Santos, J., Iglesias, V., Santos-Suárez, J., Mangiagalli, M., Brocca, S., Pallarès, I., and Ventura, S., Cells, 2020, vol. 9, p. 145.

    Article  CAS  PubMed Central  Google Scholar 

  163. Sun, J., Deng, C., Chen, X., Yu, H., Tian, H., Sun, J., and Jing, X., Biomacromolecules, 2007, vol. 8, p. 1013.

    Article  CAS  PubMed  Google Scholar 

  164. Chen, L., Chen, T., Fang, W., Wen, Y., Lin, S., Lin, J., and Cai, C., Biomacromolecules, 2013, vol. 14, p. 4320.

    Article  CAS  PubMed  Google Scholar 

  165. Sun, J., Černoch, P., Völkel, A., Wei, Y., Ruokolainen, J., and Schlaad, H., Macromolecules, 2016, vol. 49, no. 15, p. 5494. https://doi.org/10.1021/acs.macromol.6b00817

    Article  CAS  Google Scholar 

  166. Jain, M. and Matsumura, K., Mater. Sci. Eng., C, 2016, vol. 69, p. 1273.

    Article  CAS  Google Scholar 

  167. Peppas, N.A., Hilt, J.Z., Khademhosseini, A., and Langer, R., Adv. Mater., 2016, vol. 18, p. 1345.

    Article  CAS  Google Scholar 

  168. Memic, A., Colombani, T., Eggermont, L.J., Razaeeyazdi, M., Steingold, J., Rogers, Z.J., Navare, K.J., Mohammed, H.S., and Bencherif, S.A., Adv. Ther., 2019, vol. 2, 1800114.

    Article  Google Scholar 

  169. Kudaibergenov, S.E., Gels, 2019, vol. 5, p. 8.

    Article  CAS  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

S.E.K. acknowledges Prof. Vitaliy V. Khutoryanskiy from University of Reading (UK) for careful editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarkyt E. Kudaibergenov.

Ethics declarations

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. IRN AP08855552).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudaibergenov, S.E. Advances in Synthetic Polyampholytes for Biotechnology and Medicine. Ref. J. Chem. 10, 12–39 (2020). https://doi.org/10.1134/S2079978020010021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978020010021

Keywords:

Navigation