Skip to main content
Log in

Li-Based Glasses for Neutron DetectionClassic Material Revisited

  • RESEARCH ARTICLE
  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

The background and preparation procedures of Li-based scintillation glasses for neutrons detection are reviewed here. The nuclear-physical modeling was used to justify the composition choice. Technological factors, which strongly influence hands-on glass preparation experience, are considered. Particular attention is paid to understanding the stabilization of activator ions, especially Ce, in 3+ oxidation state. A new approach is proposed, which allows to improve the preparation procedure reliability for glasses based on lithium disilicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Al Hamrashdi, H., Monk, S.D., and Cheneler, D., Sensors, 2019, vol. 19, no. 11, p. 2638.

    Article  CAS  PubMed Central  Google Scholar 

  2. Aryaeinejad, R. and Spencer, D.F., IEEE Nuclear Science Symp. Conf. Record, Honolulu, 2007, vol. 2, p. 1120.

    Google Scholar 

  3. Valentine, T.E., Advances in Nuclear Analysis and Simulation, Vancouver: PHYSOR, 2006, p. 10.

    Google Scholar 

  4. Van der Ende, B.M., Li, L., Godin, D., and Sur, B., Nat. Commun., 2019, vol. 10, p. 1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aryaeinejad, R., Dardenne, Y.X., Cole, J.D., and Caffrey, A.J., IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 3, p. 1539.

    Article  CAS  Google Scholar 

  6. Belushkin, A.V., Pramana, 2008, vol. 71, no. 4, p. 639.

    Article  CAS  Google Scholar 

  7. International Atomic Energy Agency, Use of Neutron Beams for Materials Research Relevant to the Nuclear Energy Sector, IAEA-TECDOC-1773, Vienna: IAEA, 2015.

  8. Utsuro, M. and Ignatovich, V.K., Handbook of Neutron Optics, Weinheim: Wiley, 2010.

    Book  Google Scholar 

  9. Narayanan, T., Wacklin, H., Konovalov, O., and Lund, R., Crystallogr. Rev., 2017, vol. 23, no. 3, p. 160.

    Article  CAS  Google Scholar 

  10. Mavromichalaki, H., Yanke, V., Dorman, L., Iucci, N., Chilingaryan, A., and Kryakunova, O., in Effects of Space Weather on Technology Infrastructure, Daglis, I.A., Ed., Dordrecht: Springer, 2004, p. 301.

    Google Scholar 

  11. Anderson, I.S., McGreevy, R.L., and Bilheux, H.Z., Neutron Imaging and Applications: A Reference for the Imaging Community, New York: Springer, 2009.

    Google Scholar 

  12. MacGillivray, G.M., in Penetrating Radiation Systems and Applications II, Doty, F.P., Barber, H.B., Roehrig, H., and Morton E., Eds., San Diego: Soc. Photo Opt., 2000, vol. 4142, p. 48.

    Google Scholar 

  13. Klett, A., in Handbook of Particle Detection and Imaging, Grupen, C. and Buvat, I., Eds., Berlin: Springer, 2012, p. 759

    Google Scholar 

  14. Kiyanagi, Y., Sakurai, Y., Kumada, H., and Tanaka, H., AIP Conference Proceedings, Texas, 2019, vol. 2160, no. 1, 050012

  15. Ellis, D.V. and Singer, J.M., Well Logging for Earth Scientists, Dordrecht: Springer, 2008, 2nd ed.

  16. Knoll, G.F., Radiation Detection and Measurement, New York: Wiley, 2000, 3rd ed.

    Google Scholar 

  17. Mazed, D., Mameri, S., and Ciolini, R., Radiat. Meas., 2012, vol. 47, no. 8, p. 577.

    Article  CAS  Google Scholar 

  18. Lithium Glass Scintillators. https://www.crystals.saint-gobain.com/products/lithium-glass-scintillators. Accessed April 3, 2020.

  19. Voitovetsky, V.K., Tolmacheva, N.S., and Arsay, M.I., At. Energy, 1959, vol. 6, no. 3, p. 321

    Google Scholar 

  20. Voitovetsky, V.K. and Tolmacheva, N.S., At. Energy, 1959, vol. 6, no. 4, p. 472.

    Google Scholar 

  21. Arbuzov, V.I., Doctoral (Phys.–Math.) Dissertation, St. Petersburg: Vavilov State Opt. Inst., 1996.

  22. Arbuzov, V.I., Andreeva, N.Z., Vitenko, V.A., and Milovidov, M.A., Radiat. Meas., 1995, vol. 25, no. 1, p. 475.

    Article  CAS  Google Scholar 

  23. Shul’gin, B.V., Petrov, V.L., Pustovarov, V.A., Arbuzov, V.I., Raikov, D.V., Ivanovskikh, K.V., and Ishchenko, A.V., Phys. Solid State, 2005, vol. 47, no. 8, p. 1412.

    Article  CAS  Google Scholar 

  24. Spowart, A.R., Nucl. Instrum. Methods, 1976, vol. 135, no. 3, p. 441.

    Article  CAS  Google Scholar 

  25. Spowart, A.R., Nucl. Instrum. Methods, 1977, vol. 140, no. 1, p. 19.

    Article  CAS  Google Scholar 

  26. Fairley, E.J. and Spowart, A.R., Nucl. Instrum. Methods, 1978, vol. 150, no. 2, p. 159.

    Article  CAS  Google Scholar 

  27. Abel, K.H., Arthur, R.J., Bliss M., Brite, D.W., Brodzinski, R.L., Craig, R.A., Geelhood, B.D., Goldman, D.S., Griffin, J.W., and Perkins, R.W., Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, vol. 353, nos. 1–3, p. 114.

    CAS  Google Scholar 

  28. Bliss, M., Aker, P.M., and Windisch, C.F., Jr., J. Non-Cryst. Solids, 2012, vol. 358, no. 4, p. 751.

    Article  CAS  Google Scholar 

  29. Yanagida, T., Ueda, J., Masai, H., Fujimoto, Y., and Tanabe, S., J. Non-Cryst. Solids, 2016, vol. 431, p. 140.

    Article  CAS  Google Scholar 

  30. Hehlen, M.P., Wiggins, B.W., Favalli, A., Iliev, M., and Ianakiev, K. D., J. Appl. Phys., 2018, vol. 124, no. 12, 124502.

    Article  CAS  Google Scholar 

  31. Wengrowicz, U., Osovizky, A., Ocherashvili, A., Ginzburg, D., Ifergan, Y., Volasky, E., and Orion, I., EPJ Web Conf., France, 2020, vol. 225, 07012

  32. Lecoq, P., Gektin, A., and Korzhik, M., Inorganic Scintillators for Detector Systems, Cham: Springer, 2017.

    Book  Google Scholar 

  33. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al., Nucl. Instrum. Methods Phys. Res., Sect. A., 2003, vol. 506, no. 3, p. 250.

    CAS  Google Scholar 

  34. Korjik, M., Brinkmann, K. T., Dosovitskiy, G., Dormenev, V., Fedorov, A., Kozlov, D., Mechinsky, V., and Zaunick, H. G., IEEE Trans. Nucl. Sci., 2019, vol. 66, no. 1, p. 536.

    Article  CAS  Google Scholar 

  35. Holand, W. and Beall, G.H., Glass-Ceramic Technology, Hoboken: Wiley, 2012, 2nd ed.

    Book  Google Scholar 

  36. Zhu, D.M., Zhou, W.C., Ray, C.S., and Day, D.E., Key Eng. Mater., 2007, vol. 336, p. 1874.

    Article  Google Scholar 

  37. Thieme, K. and Rüssel, C., J. Mater. Sci., 2016, vol. 51, no. 2, p. 989.

    Article  CAS  Google Scholar 

  38. Dosovitskiy, A.E. and Dosovitskiy, G.A., RF Patent 2564038, 2014.

  39. Lamoreaux, R.H. and Hildenbrand, D.L., J. Phys. Chem. Ref. Data, 1984, vol. 13, no. 1, p. 151.

    Article  CAS  Google Scholar 

  40. Lamoreaux, R.H., Hildenbrand, D.L., and Brewer, L., J. Phys. Chem. Ref. Data, 1987, vol. 16, no. 3, p. 419.

    Article  CAS  Google Scholar 

  41. Deng, L., Zhang, X., Li, B., Jia, X., Zhang, M., and Ouyang, S., J. Wuhan Univ. Technol., Mater. Sci. Ed., 2018, vol. 33, no 1, p. 49.

    CAS  Google Scholar 

  42. Tratsiak, Y., Korzhik, M., Fedorov, A., Dosovitsky, G., Akimova, O., Belus, S., and Trusova, E., J. Alloys Compd., 2019, vol. 797, p. 302.

    Article  CAS  Google Scholar 

  43. Blasse, G. and Grabmaier, B.C., Luminescent Materials, Berlin: Springer, 1994.

    Book  Google Scholar 

  44. Nikl, M., Kamada, K., Babin, V., Pejchal, J., Pilarova, K., Mihokova, E., Beitlerova, A., Bartosiewicz, K. Kurosawa, Sh., and Yoshikawa, A., Cryst. Growth Des., 2014, vol. 14. no. 9, p. 4827.

    Article  CAS  Google Scholar 

  45. Tratsiak, Y., Fedorov, A., Dosovitsky, G., Akimova, O., Gordienko, E., Korjik, M., Mechinsky, V., and Trusova, E., J. Alloys Compd., 2018, vol. 735. no. 25, p. 2219.

    Article  CAS  Google Scholar 

  46. Niinisto, L., in Systematics and the Properties of the Lanthanides, Sinha, S.P., Ed., Dordrecht: D. Reidel, 1983, p. 125

    Google Scholar 

  47. Tretyakov, Yu.D., Khimiya nestekhiometricheskikh okislov (Chemistry of Nonstoichiometric Oxides), Moscow: Moscow State University, 1974.

  48. Bevan, D.J.M. and Kordis, J., J. Inorg. Nucl. Chem., 1964, vol. 26. no. 9. p. 1509.

    Article  CAS  Google Scholar 

  49. Bernal, S., Blanco, G., Gatica, J.M., Pérez-Omil, J.A., Pintado, J.M., and Vidal, H. in Binary Rare Earth Oxides, Adachi, G., Imanaka Nobuhito, and Kang, Z.C., Eds., Dordrecht: Springer, 2004, p. 9.

  50. Leonov, A.I., Vysokotemperaturnaya khimiya kislorodnykh soyedineniy tseriya (High-Temperature Chemistry of Cerium Oxygen Compounds), Leningrad: Nauka, 1970.

  51. Popov, V.V., Menushenkov, A.P., Zubavichus, Ya.V., Sharapov, A.S., Kabanova, V.A., Yastrebtsev, A.A., Arzhatkina, L.A., Tsarenko, N.A., Strel’nikova A.M., and Kurilkin, V.V., Russ. J. Inorg. Chem., 2016, vol. 61, p. 225.

    Article  CAS  Google Scholar 

  52. Vasylechko, L., Senyshyn, A., and Bismayer, U., C in Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K.A., Bunzli, J., and Pecharsky, V., Eds., 2009, Amsterdam: Elsevier, vol. 39, p. 113.

    Google Scholar 

  53. Leonov, A.I., Rudenko, V.S., and Keler, E.K., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk., 1961, vol. 11, p. 1925.

    Google Scholar 

  54. Leonov, A.I., Rudenko, V.S., and Keler, E.K., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk., 1961, vol. 10, no. 11, p. 1797.

    Google Scholar 

  55. Smythe, D.J., Cerium Oxidation State in Silicate Melts and the Application to Ce-in-Zircon Oxygen Baromety, PhD Thesis, Toronto: Univ. Toronto, 2013.

  56. Tratsiak, Y., Korjik, M., Fedorov, A., Dosovitsky, G., Akimova, O., Gordienko, E., and Trusova, E., J. Alloys Compd., 2018, vol. 765, p. 207.

    Article  CAS  Google Scholar 

  57. Rlebling, E.F., Can. J. Chem., 1964, vol. 42, no. 12, p. 2811.

    Article  Google Scholar 

  58. Dosovitskiy, A.E., Dosovitskiy, G.A., Mikhlin, A.L., Tret’yak, E.V., and Trusova, E.E., RF Patent 2564037, 2015.

  59. Dosovitskiy, A.E., Dosovitskiy, G.A., and Korjik, M.V., Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV, SPIE proceedings, San Diego, CA, 2012, vol. 8507, 85070Q.

  60. Calas, G. and Petiau, J., Bull. Mineral., 1983, vol. 106, no. 1, p.33.

    CAS  Google Scholar 

  61. Henderson, G.S., Calas, G., and Stebbins, J.F., Elements, 2006, vol. 2, no. 5, p. 269.

    Article  CAS  Google Scholar 

  62. Bourhis, E.L., Glass: Mechanics and Technology, Weinheim: Wiley, 2008.

    Google Scholar 

  63. Jiang, Z.H. and Zhang, Q.Y., Prog. Mater. Sci., 2014, vol. 61, p. 144.

    Article  CAS  Google Scholar 

  64. Stebbins, J.F., Am. Mineral., 2016, vol. 101. no. 4. p. 753.

    Article  Google Scholar 

  65. Nascimento, M.L.F., Fokin, V.M., Zanotto, E.D., and Abyzov, A.S., J. Chem. Phys., 2011, vol. 135, no. 19, 194703.

    Article  PubMed  CAS  Google Scholar 

  66. Paul, A., Chemistry of Glasses, New York: Chapman and Hall, 1982.

    Book  Google Scholar 

  67. Richardson, F.D. and Jeffes, J.H.E. J. Iron Steel Inst., 1948, vol. 160, p. 261.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Most measurements were performed using the equipment of shared analytical facilities of the Institute for Chemical Reagents and High Purity Chemical Substances, National Research Center “Kurchatov Institute.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Dosovitskiy or M. Korzhik.

Ethics declarations

The work was supported by the grant of Russian Federation Government no. 14.W03.31.0004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dosovitskiy, G., Akimova, O., Amelina, A. et al. Li-Based Glasses for Neutron DetectionClassic Material Revisited. Ref. J. Chem. 10, 1–11 (2020). https://doi.org/10.1134/S207997802001001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207997802001001X

Keywords:

Navigation