Skip to main content
Log in

Larva Morphology of Shore Flies Ephydra riparia and Paracoenia fumosa (Diptera: Ephydridae) and Adaptation of Diptera to Increased Salinity

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Larvae of many shore fly species (family Ephydridae) are adapted to living in water with high or extremely high salinity. Little is known about the morphological and physiological foundations of such adaptation. We described the details of the morphology of third-instar larvae of two shore flies: Ephydra riparia and Paracoenia fumosa, and presented the images made using scanning electron microscopy (SEM). For the first time, by silver-staining and SEM, we proved that the larvae of both studied species had anal organs (AO)— specialized structures that serve an osmoregulatory function and are responsible for the transport of ions from the environment to the larval hemolymph (but not in the opposite direction). We compared the larvae morphology of the studied species with some other shore fly species from the genera Ephydra, Paracoenia, Hydrellia, and Coenia, as well as with larvae of the model species Drosophila melanogaster (family Drosophilidae). Special attention was paid to the morphology of AO, which contribute to the adaptation of larvae to increased salinity. Extremely halophilic species either do not have AO, or they are poorly developed, while the moderately halophilic ephydrids have more developed features connected with the permeability of the AO cuticle and active ion transport. These features are most developed in freshwater shore flies. AO activity can vary due to the shape and area of the AO, the smoothness or wrinkling of the cuticle, and the presence of nano-pits on it. The described variability of the AO structure is probably adaptive since, at high salinity, both the permeability of the AO cuticle and the active transport of ions from the environment to the hemolymph become less useful or even harmful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Aldrich, J.M., The biology of some Western species of the dipterous genus Ephydra, J. N. Y. Entomol. Soc., 1912, vol. 20, no. 2, pp. 77–99.

    Google Scholar 

  2. Aldrich, J.M., The kelp-flies of North America (genus Fucellia, family Anthomyiidae), Proc. Calif. Acad. Sci., 1918, vol. 8, no. 5, pp. 157–179.

    Google Scholar 

  3. Apostolopoulou, A.A., Rist, A., and Thum, A.S., Taste processing in Drosophila larvae, Front. Integr. Neurosci., 2015, vol. 9, p. 50. https://doi.org/10.3389/fnint.2015.00050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arbuthnott, D. and Rundle, H.D., Misalignment of natural and sexual selection among divergently adapted Drosophila melanogaster populations, Anim. Behav., 2014, vol. 87, pp. 45–51.

    Article  Google Scholar 

  5. Beyer, A., Morphologische, ökologische and physiologische Studien an den Larven der Fliegen, Kiel. Meeresforsch., 1939, vol. 3, pp. 265–320.

    Google Scholar 

  6. Cash-Clark, C.E. and Bradley, T.J., External morphology of the larvae of Ephydra (Hydropyrus) hians (Diptera: Ephydridae), J. Morphol., 1994, vol. 219, pp. 309–318.

    Article  PubMed  Google Scholar 

  7. Courtney, G.W., Pape, T., Skevington, J.H., and Sinclair, B.J., Biodiversity of Diptera, in Insect Biodiversity: Science and Society, Foottit, R.G. and Adler, P.H., Eds., Chichester: John Wiley & Sons, 2017, pp. 229–278.

    Google Scholar 

  8. Deonier, D.L., A Systematic and Ecological Study of Nearctic Hydrellia (Diptera: Ephydridae), Washington: Smithsonian Inst. Press, 1971.

    Book  Google Scholar 

  9. Dmitrieva, A.S., Ivnitsky, S.B., and Markov, A.V., Adaptation of Drosophila melanogaster to unfavourable feed substrate is accompanied by expansion of trophic niche, Biol. Bull. Rev., 2017, vol. 7, no. 5, pp. 369–379.

    Article  Google Scholar 

  10. Dmitrieva, A.S., Ivnitsky, S.B., Maksimova, I.A., Panchenko, P.L., Kachalkin, A.V., and Markov, A.V., Yeasts affect tolerance of Drosophila melanogaster to food substrate with high NaCl concentration, PLoS One, 2019, vol. 14, no. 11, p. e0224811. https://doi.org/10.1371/journal.pone.0224811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dobson, T., Seaweed flies (Diptera: Coelopidae, etc.), in Marine Insects, Cheng, L., Ed., Oxford: North Holland Publishing Company; N.Y.: Elsevier, 1976, pp. 447–464.

  12. Durham, B. and Grodowitz, M.J., The anal plates of larval Hydrellia pakistanae (Diptera: Ephydridae), Florida Entomol., 2012, vol. 95, no. 1, pp. 82–88.

    Article  Google Scholar 

  13. Foote, B.A., Biology and immature stages of Coenia curvicauda (Diptera: Ephydridae), J. N. Y. Entomol. Soc., 1990, vol. 98, no. 1, pp. 93–102.

    Google Scholar 

  14. Gloor, H. and Chen, P.S., Uber ein Analorgan bei Drosophila-larven, Rev. Suisse Zool., 1950, vol. 57, pp. 571–576.

    Google Scholar 

  15. Gorshkova, A.A., Fetisova, E.S., Yakovleva, E.Yu., Naimark, E.B., and Markov, A.V., Impact of spatial heteroge-neity on Drosophila melanogaster adaptation to unfavourable food media: The results of an experimental evolution study, Biol. Bull. Rev., 2019, vol. 9, no. 1, pp. 29–41.

    Article  Google Scholar 

  16. Herbst, D.B., Comparative population ecology of Ephydra hians Say (Diptera: Ephydridae) at Mono Lake (California) and Abert Lake (Oregon), Hydrobiology, 1988, vol. 158, pp. 145–166.

    Article  CAS  Google Scholar 

  17. Jarial, M.S., Ultrastructure of the anal organ of Drosophila larva with reference to ion transport, Tissue Cell, 1987, vol. 19, no. 4, pp. 559–575.

    Article  CAS  PubMed  Google Scholar 

  18. Kadavy, D.R., Plantz, B., Shaw, C.A., Myatt, J., Kokjohn, T.A., and Nickerson, K.W., Microbiology of the oil fly, Helaeomyia petrolei, Appl. Environ. Microbiol., 1999, vol. 65, no. 4, pp. 1477–1482. https://doi.org/10.1128/AEM.65.4.1477-1482.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krivosheina, M.G., To the biology of flies of the genus Ephydra Fallén, 1810, with the description of larvae of seven Palaearctic species (Diptera: Ephydridae), Russ. Entomol. J., 2003, vol. 12, no. 1, pp. 79–86.

    Google Scholar 

  20. Krivosheina, M.G., Structure and role of anal papillae in larvae of Diptera, Zool. Zh., 2005, vol. 84, no. 2, pp. 207–217.

    Google Scholar 

  21. Markov, A.V., Ivnitsky, S.B., Kornilova, M.B., Naimark, E.B., Shirokova, N.G., and Perfilieva, K.S., Maternal effect masks the adaptation to adverse conditions and hampers divergence in Drosophila melanogaster, Biol. Bull. Rev., 2015, vol. 6, pp. 429–435. https://doi.org/10.1134/s2079086416050054

    Article  Google Scholar 

  22. Mathis, W.N. and Zatwarnicki, T., World catalog of shore flies (Diptera: Ephydridae), Memoires of Entomology International, 1995, vol. 4, pp. 1–423.

    Google Scholar 

  23. McAlpine, D.K., Relationships of the genus Heterocheila (Diptera: Sciomyzoidea) with description of a new family, Tijdschrift voor Entomologie, 1991, vol. 134, pp. 193–199.

    Google Scholar 

  24. Pape, T., Blagoderov, V., and Mostovski, M.B., Order Diptera Linnaeus, 1758, in Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness (Zootaxa 3148), Zhang, Z.-Q., Ed., Auckland: Magnolia Press, 2011, pp. 222–229.

    Google Scholar 

  25. Schneeberg, K., Bauernfeind, R., and Pohl, H., Comparison of cleaning methods for delicate insect specimens for scanning electron microscopy, Microsc. Res. Tech., 2017, vol. 80, no. 11, pp. 1199–1204. https://doi.org/10.1002/jemt.22917

    Article  CAS  PubMed  Google Scholar 

  26. Skidmore, P., The Biology of the Muscidae of the World, Dordrecht: Springer, 1985.

    Google Scholar 

  27. Stergiopoulos, K., Cabrero, P., Davies, S.A., and Dow, J.A., Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress, Physiol. Genomics, 2009, vol. 37, no. 1, pp. 1–11. https://doi.org/10.1152/physiolgenomics.90360.2008

    Article  CAS  PubMed  Google Scholar 

  28. Stoffolano, J.G., The anal organ of larvae of Musca autumnalis, M. domestica, and Orthellia caesarion (Diptera, Muscidae), Ann. Entomol. Soc. Am., 1970, vol. 63, pp. 1647–1654.

    Article  Google Scholar 

  29. Te Velde, J.H., Molthoff, C.F.M., and Scharloo, W., The function of anal papillae in salt adaptation of Drosophila melanogaster larvae, J. Evol. Biol., 1988, vol. 2, pp. 139–153.

    Article  Google Scholar 

  30. Thorpe, W.H., The biology of the petroleum fly (Psilopa petrolii, COQ), Trans. Entomol. Soc. London, 1930, vol. 78, no. 2, pp. 331–344. https://doi.org/10.1111/j.1365-2311.1930.tb00391.x

    Article  Google Scholar 

  31. Vikhrev, N.E., Lispe (Diptera, Muscidae) of the Palaearctic region, Amur. Zool. J., 2020, vol. 13, no. 2, pp. 158–188. https://doi.org/10.33910/2686-9519-2020-12-2-158-188

  32. Vikhrev, N.E., Lispe (Diptera, Muscidae) of Africa, Amur. Zool. J., 2021, vol. 13, no. 3, pp. 369–400. https://doi.org/10.33910/2686-9519-2021-13-3-369-400

  33. Waddington, C.H., Canalization of development and genetic assimilation of acquired characters, Nature, 1959, vol. 183, pp. 1654–1655.

    Article  CAS  PubMed  Google Scholar 

  34. Wigglesworth, V.B., The effect of salts on the anal gills of the mosquito larva, J. Exp. Biol., 1933, vol. 10, no. 1, pp. 1–15.

    Article  CAS  Google Scholar 

  35. Wipfler, B., Schneeberg, K., Löffler, A., Hünefeld, F., Meier, R., and Beutel, R.G., The skeletomuscular system of the larva of Drosophila melanogaster (Drosophilidae, Diptera)—A contribution to the morphology of a model organism, Arthropod Struct. Dev., 2013, vol. 42, no. 1, pp. 47–68. https://doi.org/10.1016/j.asd.2012.09.005

    Article  PubMed  Google Scholar 

  36. Zack, R.S., Biology and immature stages of Paracoenia bisetosa (Coquillett) (Diptera: Ephydridae), Ann. Entomol. Soc. Am., 1983, vol. 76, no. 3, pp. 487–497. https://doi.org/10.1093/aesa/76.3.487

    Article  Google Scholar 

  37. Zinchenko, T.D., Golovatyuk, L.V., Abrosimova, E.V., and Popchenko, T.V., Macrozoobenthos in saline rivers in the Lake Elton basin: Spatial and temporal dynamics, Inland Water Biol., 2017, vol. 10, no. 4, pp. 384–398. https://doi.org/10.1134/S1995082917040125

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The scanning electron microscopy studies were conducted using the equipment of the Center of Microscopy on the White Sea Biological Station of Moscow State University, and Paleontological Institute of the Russian Academy of Sciences. The authors are grateful to Roman Anatolyevich Rakitov and Fedor Vasilievich Bolshakov for their assistance in working on the SEM, as well as Irina Arkadyevna Maximova for her assistance in collecting field material at the White Sea Biological Station of Moscow State University.

Funding

The study was funded by the Russian Science Foundation, project no. 22-24-00227, https://rscf.ru/project/22-24-00156/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Yakovleva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, E.Y., Naimark, E.B., Sivunova, D.D. et al. Larva Morphology of Shore Flies Ephydra riparia and Paracoenia fumosa (Diptera: Ephydridae) and Adaptation of Diptera to Increased Salinity. Biol Bull Rev 14, 360–375 (2024). https://doi.org/10.1134/S2079086424030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086424030101

Navigation