Skip to main content
Log in

On the Biological Role of Histone Acetylation/Deacetylation in the Process of Plant Germination

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract—The transition of embryos in air-dried seeds from a state of dormancy to a state with highly active metabolism during germination is accompanied by significant changes in both spatial and temporal patterns of gene expression and is controlled by multilevel regulatory networks. The character and degree of acetylation of chromatin proteins depend on the transcriptional activity of chromatin and are also associated with DNA replication and the cell cycle. Obtaining a complete picture of the involvement of histone modification in seed germination will be useful for increasing crop yields, as a way to assess the quality and viability of seeds before sowing, and will also allow the development of methods for managing plant genetic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Alinsug, M.V., Chen, F.F., Luo, M., et al., Subcellular localization of class ii hdas in Arabidopsis thaliana: Nucleocytoplasmic shuttling of HDA15 is driven by light, PLoS One, 2012, vol. 7, p. e30846.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Azad, G.K., Swagatika, S., Kumawat, M., et al., Modifying chromatin by histone tail clipping, J. Mol. Biol., 2018, vol. 430, no. 18, pp. 3051–3067.

    Article  CAS  PubMed  Google Scholar 

  3. Boycheva, I., Vassileva, V., and Iantcheva, A., Histone acetyltransferases in plant development and plasticity, Curr. Genomics, 2014, vol. 15, no. 1, pp. 28–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Brownell, J.E. and Allis, C.D., Special hats for special occasions: Linking histone acetylation to chromatin assembly and gene activation, Curr. Opin. Genet. Dev., 1996, vol. 6, no. 2, pp. 176–184.

    Article  CAS  PubMed  Google Scholar 

  5. Carrera-Castaño, G., Calleja-Cabrera, J., Pernas, M., et al., An updated overview on the regulation of seed germination, Plants, 2020, vol. 9, no. 6, p. 703.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chen, Z.J. and Tian, L., Roles of dynamic and reversible histone acetylation in plant development and polyploidy, Biochim. Biophys. Acta, 2007, vol. 1769, nos. 5–6, pp. 295–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chen, W.Q., Li, D.X., Zhao, F., et al., One additional histone deacetylase and 2 histone acetyltransferases are involved in cellular patterning of Arabidopsis root epidermis, Plant Signaling Behav., 2016, vol. 11, p. e1131373.

    Article  Google Scholar 

  8. Chhun, T., Chong, S.Y., Park, B.S., et al., HSI2 repressor recruits MED13 and hda6 to down-regulate seed maturation gene expression directly during Arabidopsis early seedling growth, Plant Cell Physiol., 2016, vol. 57, pp. 1689–1706.

    Article  CAS  PubMed  Google Scholar 

  9. Cimini, D., Mattiuzzo, M., Torosantucci, L., and Degrassi, F., Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects, Mol. Biol. Cell, 2003, vol. 14, no. 9, pp. 3821–3833.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Danovich, K.N., Sobolev, A.M., Zhdanova, L.P., et al., Fiziologiya semyan (Physiology of Seeds), Moscow: Nauka, 1982.

  11. Davie, J.R., Inhibition of histone deacetylase activity by butyrate, J. Nutr., 2003, vol. 133, no. 7, pp. 2485S–2493S.

    Article  CAS  PubMed  Google Scholar 

  12. Dokmanovic, M. and Marks, P.A., Prospects: Histone deacetylase inhibitors, J. Cell. Biochem., 2005, vol. 96, no. 2, pp. 293–304.

    Article  CAS  PubMed  Google Scholar 

  13. Du, Z., Li, H., Wei, Q., et al., Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica, Mol. Plant, 2013, vol. 6, no. 5, pp. 1463–1472.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Feitoza, L., Costa, L., and Guerra, M., Condensation patterns of prophase/prometaphase chromosome are correlated with H4K5 histone acetylation and genomic DNA contents in plants, PLoS One, 2017, vol. 12, no. 8, p. e0183341.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Fina, J.P., Masotti, F., Rius, S.P., et al., HAC1 and HAF1 histone acetyltransferases have different roles in UV-B responses in Arabidopsis, Front. Plant Sci., 2017, vol. 8, p. 1179.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fuchs, J., Demidov, D., Houben, A., and Schubert, I., Chromosomal histone modification patterns—From conservation to diversity, Trends Plant Sci., 2006, vol. 11, pp. 199–208.

    Article  CAS  PubMed  Google Scholar 

  17. Gan, L., Wei, Z., Yang, Z., et al., Updated mechanisms of GCN5—The monkey king of the plant kingdom in plant development and resistance to abiotic stresses, Cells, 2021, vol. 10, no. 5, p. 979.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Garcia-Ramirez, M., Rocchini, C., and Ausio, J., Modulation of chromatin folding by histone acetylation, J. Biol. Chem., 1995, vol. 270, no. 30, pp. 17923–17928.

    Article  CAS  PubMed  Google Scholar 

  19. Gong, F., Chiu, L.Y., and Miller, K.M., Signaling to genome maintenance and cancer, PLoS Genet., 2016, vol. 12, no. 9, p. e1006272.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Haigney, A., Ricketts, M.D., and Marmorstein, R., Dissecting the molecular roles of histone chaperones in histone acetylation by type B histone acetyltransferases (HAT-B), J. Biol. Chem., 2015, vol. 290, no. 51, pp. 30648–30657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hartl, M., Fussl, M., Boersema, P.J., et al., Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis, Mol. Syst. Biol., 2017, vol. 13, no. 10, p. 949.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hollender, C. and Liu, Z., Histone deacetylase genes in Arabidopsis development, J. Integr. Plant Biol., 2008, vol. 50, pp. 875–885.

    Article  CAS  PubMed  Google Scholar 

  23. Hong, L., Schroth, G.P., Matthews, H.P., et al., Studies of the dna binding properties of histone H4 amino terminus, J. Biol. Chem., 1993, vol. 268, no. 1, pp. 305–314.

    Article  CAS  PubMed  Google Scholar 

  24. Hou, H., Wang, P., Zhang, H., et al., Histone acetylation is involved in gibberellin-regulated sodCp gene expression in maize aleurone layers, Plant Cell Phys., 2015, vol. 56, no. 11, pp. 2139–2149.

    CAS  Google Scholar 

  25. Hu, Y., Lu, Y., Zhao, Y., and Zhou, D.X., Histone acetylation dynamics integrates metabolic activity to regulate plant response to stress, Front. Plant Sci., 2019, vol. 10, p. 1236.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ivanov, V.B., Dobrochaev, A.E., and Baskin, T.I., What the distribution of cell lengths in the root meristem does and does not reveal about cell division, J. Plant Growth Regul., 2002, vol. 21, no. 1, pp. 60–67.

    Article  CAS  PubMed  Google Scholar 

  27. Jasencakova, Z., Meister, A., Walter, J., et al., Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription, Plant Cell, 2000, vol. 12, pp. 2087–2100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jasencakova, Z., Meister, A., and Schubert, I., Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley, Chromosoma, 2001, vol. 110, no. 2, pp. 83–92.

    Article  CAS  PubMed  Google Scholar 

  29. Kim, S., Sophie, J.M., Piquerez, J.S., et al., GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5' and 3' ends of its target genes, Nucleic Acids Res., 2020, vol. 48, no. 11, pp. 5953–5966.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kolle, D., Sarg, B., Lindner, H., and Loidl, P., Substrate and sequential site specificity of cytoplasmic histone acetyltransferases of maize and rat liver, FEBS Lett., 1998, vol. 421, no. 2, pp. 109–114.

    Article  CAS  PubMed  Google Scholar 

  31. Kouzarides, T., Chromatin modifications and their function, Cell, 2007, vol. 128, no. 4, pp. 693–705.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar, V., Thakur, J.K., and Prasad, M., Histone acetylation dynamics regulating plant development and stress responses, Cell. Mol. Life Sci., 2021, vol. 78, no. 10, pp. 4467–4486.

    Article  CAS  PubMed  Google Scholar 

  33. Lechner, T., Lusser, A., Pipal, A., et al., RPD3-type histone deacetylases in maize embryos, Biochemistry, 2000, vol. 39, no. 7, pp. 1683–1692.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, D.Y., Hayes, J.J., Pruss, D., Wolffe, A.P., et al., A positive role for histone acetylation in transcription factor access to nucleosomal DNA, Cell, 1993, vol. 72, no. 1, pp. 73–84.

    Article  CAS  PubMed  Google Scholar 

  35. Li, H., Torres-Garcia, J., Latrasse, D., et al., Plant-specific histone deacetylases HDT1/2 regulate GIBBERELLIN 2–OXIDASE2 expression to control Arabidopsis root meristem cell number, Plant Cell, 2017, vol. 29, no. 9, pp. 2183–2196.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Li, Y., Butenko, Y., and Grafi, G., Histone deacetylation is required for progression through mitosis in tobacco cells, Plant J., 2005, vol. 41, no. 3, pp. 346–352.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, C., Lu, F., Cui, X., and Cao, X., Histone methylation in higher plants, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 395–420.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, X., Chen, C.-Y., Wang, K.-C., et al., PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings, Plant Cell, 2013, vol. 25, no. 4, pp. 1258–1273.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Liu, X., Yang, S., Yu, C.W., et al., Histone acetylation and plant development, in Enzymes, Lin, C. and Luan, Sh., Eds., Burlington: Academic, 2016, vol. 40, pp. 173–199.

    Google Scholar 

  40. Loidl, P., Towards an understanding of the biological function of histone acetylation, FEBS Lett., 1988, vol. 227, no. 2, pp. 91–95.

    Article  CAS  PubMed  Google Scholar 

  41. Loidl, P., Histone acetylation: Facts and questions, Chromosoma, 1994, vol. 103, no. 7, pp. 441–449.

    Article  CAS  PubMed  Google Scholar 

  42. Lu, L., Chen, X., Sanders, D., et al., High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in Arabidopsis and rice, Epigenetics, 2015, vol. 10, no. 11, pp. 1044–1053.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Luján-Soto, E.V. and Dinkova, T.D., Time to wake up: Epigenetic and small-RNA-mediated regulation during seed germination, Plants, 2021, vol. 10, no. 2, p. 236.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Mahrez, W., Arellano, M.S., Moreno-Romero, J., et al., H3K36ac is an evolutionary conserved plant histone modification that marks active genes, Plant Physiol., 2016, vol. 170, no. 3, pp. 1566–1577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mandal, P., Verma, N., Azad, G.K., et al., Epigenetics: Role of histone proteases in cellular functions and diseases, in Molecular Mechanisms and Physiology of Disease: Implications for Epigenetics and Health, Maulik, N. and Karagiannis, T., Eds., New York: Springer, 2014, pp. 113–125.

  46. Mariño-Ramírez, L., Kann, M.G., Shoemaker, B.A., and Landsman, D., Histone structure and nucleosome stability, Expert Rev. Proteomics, 2005, vol. 2, no. 5, pp. 719–729.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Martin, B.J.E., Brind’Amour, J., Kuzmin, A., et al., Transcription shapes genome-wide histone acetylation patterns, Nat. Commun., 2021, vol. 12, no. 1, p. 210.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Martínez, Ó., Arjones, V., and González, M.V., Histone deacetylase inhibitors increase the embryogenic potential and alter the expression of embryogenesis-related and HDAC-encoding genes in grapevine (Vitis vinifera L., cv. Mencía), Plants, 2021, vol. 10, no. 6, p. 1164.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Musselman, C.A., Lalonde, M.E., Cote, J., and Kutateladze, T.G., Perceiving the epigenetic landscape through histone readers, Nat. Struct. Mol. Biol., 2012, vol. 19, no. 12, pp. 1218–1227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Nguyen, H.N., Kim, J.H., Jeong, C.Y., et al., Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation, Plant Cell Rep., 2013, vol. 32, no. 10, pp. 1625–1636.

    Article  CAS  PubMed  Google Scholar 

  51. Nieuwland, J., Stamm, P., Wen, B., et al., Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6, Sci. Rep., 2016, vol. 6, p. 23586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Nonogaki, H., Bassel, G.W., and Bewley, J.D., Germination—Still a mystery, Plant Sci., 2010, vol. 179, no. 6, pp. 574–581.

    Article  CAS  Google Scholar 

  53. Nonogaki, H., Seed dormancy and germination–Emerging mechanisms and new hypotheses, Front. Plant Sci., 2014, vol. 5, p. 233.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Pandey, R., Muller, A., Napoli, C.A., et al., Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes, Nucleic Acids Res., 2002, vol. 30, no. 23, pp. 5036–5055.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Parthun, M.R., Widom, J., and Gottschling, D.E., The major cytoplasmic histone acetyltransferase in yeast: Links to chromatin replication and histone metabolism, Cell, 1996, vol. 87, no. 1, pp. 85–94.

    Article  CAS  PubMed  Google Scholar 

  56. Roth, S.Y., Denu, J.M., and Allis, C.D., Histone acetyltransferases, Annu. Rev. Biochem., 2001, vol. 70, pp. 81–120.

    Article  CAS  PubMed  Google Scholar 

  57. Sadoul, K., Boyault, C., Pabion, M., and Khochbin, S., Regulation of protein turnover by acetyltransferases and deacetylases, Biochimie, 2008, vol. 90, pp. 306–312.

    Article  CAS  PubMed  Google Scholar 

  58. Servet, C., Conde e Silva, N., and Zhou, D.-X., Histone acetyltransferase ATGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis, Mol. Plant, 2010, vol. 3, no. 4, pp. 670–677.

    Article  CAS  PubMed  Google Scholar 

  59. Smolikova, G., Strygina, K., Krylova, E., et al., Transition from seeds to seedlings: Hormonal and epigenetic aspects, Plants, 2021, vol. 10, no. 9, p. 1884.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Spencer, V.A. and Davie, J.R., Role of covalent modifications of histones on regulating gene expression, Gene, 1999, vol. 240, no. 1, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  61. Tanaka, M., Kikuchi, A., and Kamada, H., The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination, Plant Physiol., 2008, vol. 146, no. 1, pp. 149–161.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Vafina, G.H. and Ivanov, R.S., Localization of Arg-X proteolysis in the supramolecular structures of cell nuclei during the induction of growth in mature wheat germs, Indian J. Plant Physiol., 2016, vol. 21, no. 3, pp. 370–373.

    Article  Google Scholar 

  63. Vafina, G.H., Ivanov, R.S., and Ivanova, E.A., Analysis of Arg-X proteolytic activity in the supramolecular structures of cell nuclei influenced by inhibitor deacetylation of proteins during the germination of wheat, Indian J. Plant Physiol., 2017, vol. 3, pp. 358–364.

    Article  Google Scholar 

  64. Vafina, G.H., Ivanov, R.S., and Ivanova, E.A., Changes of Arg-X proteolysis localization under conditions of deacetylation inhibition of nuclear proteins in spring and winter wheat seedlings, Acta Physiol. Plant., 2018, vol. 40, p. 78.

    Article  Google Scholar 

  65. Vafina, G.H., Ivanov, R.S., and Kalashnik, N., Features of the formation of Arg-X proteolytic system of cellular nuclei during germination of wheat seeds, Bulg. J. Agric. Sci., 2020, vol. 26, no. 6, pp. 1158–1165. www.agrojournal.org/26/06–08.html.

    Google Scholar 

  66. Vettese-Dadey, M., Grant, P.A., Hebbes, T.R., et al., Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro, EMBO J., 1996, vol. 15, no. 10, pp. 2508–2518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Wako, T., Fukuda, M., Furushima-Shimogawara, R., et al., Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley, Plant Mol. Biol., 2002, vol. 49, no. 6, pp. 645–653.

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Z., Cao, H., Sun, Y., et al., Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid–ethylene antagonism mediated by histone deacetylation, Plant Cell, 2013, vol. 25, no. 1, pp. 149–166.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Wang, Z., Chen, F., Li, X., et al., Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1, Nat. Commun., 2016, vol. 7, p. 13412.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Wolny, E., Braszewska-Zalewska, A., Kroczek, D., and Hasterok, R., Histone H3 and H4 acetylation patterns are more dynamic than those of DNA methylation in Brachypodium distachyon embryos during seed maturation and germination, Protoplasma, 2017, vol. 254, pp. 2045–2052.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Xu, Q., Liu, Q., Chen, Z., et al., Histone deacetylases control lysine acetylation of ribosomal proteins in rice, Nucleic Acids Res., 2021, vol. 49, no. 8, pp. 4613–4628.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Xue, C., Liu, S., Chen, C., et al., Global proteome analysis links lysine acetylation to diverse functions in Oryza sativa, Proteomics, 2018, vol. 18, no. 1, p. 1700036.

    Article  Google Scholar 

  73. Yadav, SP. and Das, H. K., Discontinuous incorporation of amino acids in embryo proteins of wheat during germination, Dev. Biol., 1974, vol. 36, no. 1, pp. 183–186.

    Article  CAS  PubMed  Google Scholar 

  74. Yang, W., Chen, Z., Huang, Y., et al., Powerdress as the novel regulator enhances Arabidopsis seeds germination tolerance to high temperature stress by histone modification of SOM locus, Plant Sci., 2019, vol. 284, pp. 91–98.

    Article  CAS  PubMed  Google Scholar 

  75. Yano, R., Takebayashi, Y., Nambara, E., et al., Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana, Plant J., 2013, vol. 74, no. 5, pp. 815–828.

    Article  CAS  PubMed  Google Scholar 

  76. Yruela, I., Moreno-Yruela, C., and Olsen, C.A., Zn2+-dependent histone deacetylases in plants: Structure and evolution, Trends Plant Sci., 2021, vol. 26, no. 7, pp. 741–757.

    Article  CAS  PubMed  Google Scholar 

  77. van Zanten, M., Koini, M.A., Geyer, R., et al., Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 50, pp. 20219–20224.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. van Zanten, M., Zöll, C., Wang, Z., et al., Histone deacetylase 9 represses seedling traits in Arabidopsis thaliana dry seeds, Plant J., 2014, vol. 80, no. 3, pp. 475–488.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, H. and Ogas, J., An epigenetic perspective on developmental regulation of seed genes, Mol. Plant, 2009, vol. 2, no. 4, pp. 610–627.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, Q., Wang, P., Hou, H., et al., Histone acetylation and reactive oxygen species are involved in the preprophase arrest induced by sodium butyrate in maize roots, Protoplasma, 2017, vol. 254, pp. 167–179.

    Article  CAS  PubMed  Google Scholar 

  81. Zhao, L., Peng, T., Chen, C.-Y., et al., HY5 interacts with the histone deacetylase HDA15 to repress hypocotyl cell elongation in photomorphogenesis, Plant Physiol., 2019, vol. 180, no. 3, pp. 1450–1466.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Zhou, Y., Tan, B., Luo, M., et al., HISTONE DEACETYLASE 19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings, Plant Cell, 2013, vol. 25, no. 1, pp. 134–148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our deep gratitude to Professor R.N. Churaev for valuable comments and support.

Funding

This study was carried out within the state task of the RF Ministry of Science and Higher Education no. 075-00326-19-00 on topic AAAA-A18-118022190099-6 and no. 075-03-2021-607 on topic no. 122031100163-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Vafina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafina, G.H., Stupak, E.E. On the Biological Role of Histone Acetylation/Deacetylation in the Process of Plant Germination. Biol Bull Rev 13, 140–147 (2023). https://doi.org/10.1134/S2079086423020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086423020093

Keywords:

Navigation