Skip to main content
Log in

CAM (Crassulacean Acid Metabolism) Photosynthesis in Vascular Epiphytes

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The review summarizes and systematizes the results of existing experimental studies on the presence of CAM (Crassulacean Acid Metabolism) in vascular epiphytes of South and Central America, Southeast Asia, and Australia. This group of plants, despite its diverse taxonomic composition, exhibits common features in the distribution of carbon isotopic signature values (δ13C), which is associated with the wide distribution of CAM variants. Based on the analysis of data from the literature, we collected about 2000 δ13С values of vascular epiphytes. Based on the rich experience of studying individual floras and taxa of epiphytes, we are trying to give a current global picture of the distribution of CAM among epiphytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Barthlott, W., Schmit-Neuerburg, V., Nieder, J., and Engwald, S., Diversity and abundance of vascular epiphytes: A comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes, Plant. Ecol., 2001, vol. 152, no. 2, pp. 145–156.

    Article  Google Scholar 

  2. Barthlott, W., Mutke, J., Rafiqpoor, M.D., Kier, G., and Holger, K., Global centers of vascular plant diversity, Nova Acta Leopold., 2005, vol. 92, no. 342, pp. 61–83.

    Google Scholar 

  3. Benzing, D.H., Vascular Epiphytes: General Biology and Related Biota, Cambridge: Cambridge Univ. Press., 1990.

    Book  Google Scholar 

  4. Bone, R.E., Smith, J.A., Arrigo, N., and Buerki, S., A macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: eulophiinae orchids as a case study, New Phytol., 2015, vol. 208, pp. 469–481.

    Article  CAS  PubMed  Google Scholar 

  5. Brooks, R., Flanagan, L., Varney, G., and Ehleringer, J., Vertical gradients in photosynthetic gas exchange characteristics and refixation of respired CO2 within boreal forest canopies, Tree Physiol., 1997, vol. 17, no. 1, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  6. Cardelus, C., Colwell, R., and Watkins, J., Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak, J. Ecol., 2005, vol. 94, no. 1, pp. 144–156.

    Article  Google Scholar 

  7. Carter, P. and Martin, C., The occurrence of Crassulacean acid metabolism among epiphytes in a high-rainfall region of Costa Rica, Selbyana, 1994, vol. 15, no. 2, pp. 104–106.

    Google Scholar 

  8. Carvalho, M., Jaramillo, C., Parra, F., et al., Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests, Science, 2021, vol. 372, no. 6537, pp. 63–68.

    Article  CAS  PubMed  Google Scholar 

  9. Chiang, J., Lin, T., Luo, Y., et al., Relationships among rainfall, leaf hydrenchyma, and Crassulacean acid metabolism in Pyrrosia lanceolata (L.) Fraw. (Polypodiaceae) in central Taiwan, Flora, 2013, vol. 208, nos. 5–6, pp. 343–350.

    Article  Google Scholar 

  10. Christin, P., Osborne, C., Chatelet, D., et al., Anatomical enablers and the evolution of C4 photosynthesis, Proc. Natl Acad. Sci, 2013, vol. 110, no. 4, pp. 1381–1386.

    Article  CAS  PubMed  Google Scholar 

  11. Cockburn, W., Goh, C., and Avadhani, P., Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usneoides (DON) LDL: a variant on crassulacean acid metabolism, Plant Physiol., 1985, vol. 77, no. 1, pp. 83–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crayn, D., Winter, K., and Smith, A., Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae, Proc. Natl Acad. Sci., 2004, vol. 101, no. 10, pp. 3703–3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crayn, D., Winter, K., Nargar, K., and Smith, A., Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species, Bot. J. Linn. Soc., 2015, vol. 178, no. 2, pp. 169–221.

    Article  Google Scholar 

  14. Dawson, T., Mambelli, S., Plamboeck, A., et al., Stable isotopes in plant ecology, Annu. Rev. Ecol. Syst., 2002, vol. 33, no. 1, pp. 507–559.

    Article  Google Scholar 

  15. Drennan, M. and Nobel, S., Responses of CAM species to increasing atmospheric CO2 concentrations, Plant Cell Environ., 2000, vol. 23, no. 8, pp. 767–781.

    Article  CAS  Google Scholar 

  16. Dubuisson, J., Hennequin, S., and Schneider, H., Epiphytism in ferns: diversity and history, C. R. Biologies, 2009, vol. 332, pp. 120–128.

    Article  PubMed  Google Scholar 

  17. Earnshaw, M.J., Winter, K., Ziegler, H., et al., Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in Papua New Guinea, Oecologia, 1987, vol. 73, no. 4, pp. 566–572.

    Article  CAS  PubMed  Google Scholar 

  18. Edwards, E. and Ogburn, R.M., Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories, Int. J. Plant Sci., 2012, vol. 173, no. 6, pp. 724–733.

    Article  CAS  Google Scholar 

  19. Eskov, A.K., Voronina, E.Yu., Tedersoo, L., et al., Orchid epiphytes do not receive organic substances from living trees through fungi, Mycorrhiza, 2020, vol. 30, pp. 697–704.

    Article  PubMed  Google Scholar 

  20. Farquhar, G., On the nature of carbon isotope discrimination in C4 species, Aust. J. Plant Physiol., 1983, vol. 10, no. 2, pp. 205–226.

    CAS  Google Scholar 

  21. Farquhar, G., O’Leary, M., and Berry, J., On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol., 1982, vol. 9, pp. 121–137.

    CAS  Google Scholar 

  22. Freschi, L., Takahashi, C., Cambui, C., et al., Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage, J. Plant Physiol., 2009, vol. 167, no. 7, pp. 526–533.

    Article  PubMed  Google Scholar 

  23. Givnish, T., Barfuss, M., Ee, B., et al., Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny, Am. J. Bot., 2011, vol. 98, no. 5, pp. 872–895.

    Article  PubMed  Google Scholar 

  24. Givnish, T., Barfuss, M., Ee, B., et al., Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae, Mol. Phylogenet. Evol, 2014, vol. 71, no. 1, pp. 55–78.

    Article  PubMed  Google Scholar 

  25. Givnish, T., Spalink, D., Ames, M., et al., Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal, Journal of Biogeography., 2016, vol. 43, no. 10, pp. 1905–1916.

    Article  Google Scholar 

  26. Gravendeel, B., Smithson, A., Slik, F., and Schuiteman, A., Epiphytism and pollinator specialization: drivers for orchid diversity?, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2004, vol. 359, no. 1450, pp. 1523–1535.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Griffiths, H. and Smith, J.A.C., Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM, Oecologia, 1983, vol. 60, pp. 176–184.

    Article  PubMed  Google Scholar 

  28. Guralnick, L.J., Ting, I.P., and Lord, E.M., Crassulacean acid metabolism in the Gesneriaceae, Am. J. Bot., 1986, vol. 73, no. 3, pp. 336–345.

    Article  CAS  Google Scholar 

  29. Guy, R., Fogel, M., and Berry, J., Photosynthetic fractionation of the stable isotopes of oxygen and carbon, Plant Physiol., 1993, vol. 101, no. 1, pp. 37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Herrera, A., Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?, Ann. Bot., 2009, vol. 103, no. 4, pp. 645–653.

    Article  CAS  PubMed  Google Scholar 

  31. Holtum, J. and Winter, K., Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns, Funct. Plant Biol., 1999, vol. 26, no. 8, pp. 749–757.

    Article  CAS  Google Scholar 

  32. Holtum, J., Aranda, J., Virgo, A., et al., δ13C values and crassulacean acid metabolism in Clusia species from Panama, Trees, 2004, vol. 18, pp. 658–668.

    Article  CAS  Google Scholar 

  33. Holtum, J., Hancock, L., Edwards, E., et al., Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)?, Curr. Opin. Plant Biol., 2016, vol. 31, pp. 109–117.

    Article  CAS  PubMed  Google Scholar 

  34. Kerbauy, G., Takahashi, C., Matiz, A., et al., Crassulacean acid metabolism in epiphytic orchids: current knowledge, future perspectives, in Applied Photosynthesis, Najafpour, M., Ed., Rijeka: IntechOpen, 2012, pp. 81–104.

    Google Scholar 

  35. Kluge, M., Avadhani, P.N., and Goh, C.J., Gas exchange and water relations in epiphytic tropical ferns, in Vascular Plants as Epiphytes, Lüttge, U., Ed., Berlin: Springer, 1989, pp. 87–109.

    Google Scholar 

  36. Leao, T.C.C., Fonseca, C.R., Peres, C.A., and Tabarelli, M., Predicting extinction risk of Brazilian Atlantic forest angiosperms, Conserv. Biol., 2014, vol. 28, pp. 1349–1359.

    Article  PubMed  Google Scholar 

  37. Li, C.R., Gan, L.J., Xia, K., Zhou, X., and Hew, C.S., Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment, Plant Cell. Environ., 2002, vol. 25, pp. 369–377.

    Article  CAS  Google Scholar 

  38. Males, J., Concerted anatomical change associated with CAM in the Bromeliaceae, Funct. Plant Biol., 2018, vol. 45, no. 7, pp. 681–695.

    Article  CAS  PubMed  Google Scholar 

  39. Martin, S., Davis, R., Protti, P., and Martin, C., The occurrence of crassulacean acid metabolism in epiphytic ferns, with an emphasis on the Vittariaceae, Int. J. Plant Sci., 2005, vol. 166, no. 4, pp. 623–630.

    Article  CAS  Google Scholar 

  40. Mcnevin, D., Badger, M., Whitney, S., et al., Differences in carbon isotope discrimination of three variants of D‑ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms, J. Biol. Chem., 2007, vol. 282, no. 49, pp. 36068–36076.

    Article  CAS  PubMed  Google Scholar 

  41. Medina, E., CAM and C4 plants in the humid tropics, in Tropical Forest Plant Ecophysiology, Mulkey, S.S., Chazdon, R.L., Smith, A.P., Eds., Boston: Springer, 1996, pp. 56–88.

    Google Scholar 

  42. Merwe, N. and Medina, E., The canopy effect, carbon isotope ratios and foodwebs in Amazonia, J. Archaeol. Sci., 1991, vol. 18, no. 3, pp. 249–259.

    Article  Google Scholar 

  43. Messerschmid, T., Wehling, J., Bobon, N., et al., Carbon isotope composition of plant photosynthetic tissues reflects a Crassulacean Acid Metabolism (CAM) continuum in the majority of CAM lineages, Perspectives in Plant Ecology, Evolution and Systematics, 2021, vol. 51. https://doi.org/10.1016/j.ppees.2021.125619

  44. Minardi, B.D., Voytena, A., Santos, M., and Randi, A., Water stress and abscisic acid treatments induce the CAM pathway in the epiphytic fern Vittaria lineata (L.) Smith, Photosynthetica, 2014, vol. 52, no. 3, pp. 404–412.

    Article  CAS  Google Scholar 

  45. Monteiro, J.A.F., Zotz, G., and Körner, C., Tropical epiphytes in a CO2-rich atmosphere, Acta Oecol., 2009, vol. 35, pp. 60–68.

    Article  Google Scholar 

  46. Mooney, H., Bullock, S., and Ehleringer, J., Carbon isotope ratios of plants of a tropical dry forest in Mexico, Funct. Ecol., 1989, vol. 3, no. 2, pp. 137–142.

    Article  Google Scholar 

  47. Motomura, H., Yukawa, T., Ueno, O., and Kagawa, A., The occurrence of Crassulacean acid metabolism in Cymbidium (Orchidaceae) and its ecological and evolutionary implications, J. Plant Res., 2008, vol. 121, no. 2, pp. 163–177.

    Article  CAS  PubMed  Google Scholar 

  48. Mutke, J., Sommer, J., Kreft, H., et al., Vascular plant diversity in a changing world: global centres and biome-specific patterns, in Biodiversity Hotspots, Zachos, F. and Habel, J., Eds., Berlin: Springer, 2011, pp. 83–96.

    Google Scholar 

  49. Niechayev, N., Pereira, P., and Cushman, J., Understanding trait diversity associated with crassulacean acid metabolism (CAM), Curr. Opin. Plant Biol., 2019, vol. 49, pp. 74–85.

    Article  CAS  PubMed  Google Scholar 

  50. Oliveira, R., Zotz, G., Wanek, W., and Franco, A., Leaf trait co-variation and trade-offs in gallery forest C3 and CAM epiphytes, Biotropica, 2021, vol. 53, no. 2. https://doi.org/10.1111/btp.12895

  51. Pierce, S., Winter, K., and Griffiths, H., Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae, New Phytol., 2002, vol. 156, no. 1, pp. 75–83.

    Article  CAS  Google Scholar 

  52. Qiu, S., Sultana, S., Liu, Z.D., Yin, L.Y., and Wang, C.Y., Identification of obligate C3 photosynthesis in Dendrobium, Photosynthetica, 2015, vol. 53, no. 2, pp. 168–176.

    Article  CAS  Google Scholar 

  53. Quezada, I. and Gianoli, E., Crassulacean acid metabolism photosynthesis in Bromeliaceae: an evolutionary key innovation, Biol. J. Linn. Soc., 2011, vol. 104, no. 2, pp. 480–486.

    Article  Google Scholar 

  54. Ramirez, S., Gravendeel, B., Singer, R., et al., Dating the origin of the Orchidaceae from a fossil orchid with its pollinator, Nature, 2007, vol. 448, no. 7157, pp. 1042–1045.

    Article  CAS  PubMed  Google Scholar 

  55. Raveh, E., Gersani, M., and Nobel, P.S., CO2 uptake and fluorescence responses for a shade-tolerant cactus Hylocereus undatus under current and doubled CO2 concentrations, Physiol. Plant., 1995, vol. 93, pp. 505–511.

    Article  CAS  Google Scholar 

  56. Rodrigues, M., Matiz, A., Bertinatto, C., et al., Spatial patterns of photosynthesis in thin- and thick-leaved epiphytic orchids: Unravelling C3-CAM plasticity in an organ-compartmented way, Ann. Bot., 2013, vol. 112, no. 1, pp. 17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roeske, C. and O’Leary, M., Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate, Biochemistry, 1984, vol. 23, pp. 6275–6284.

    Article  CAS  Google Scholar 

  58. Rut, G., Krupa, J., Miszalski, Z., et al., Crassulacean acid metabolism in the epiphytic fern Platycerium bifurcatum, Photosynthetica, 2008, vol. 46, no. 1, pp. 156–160.

    Article  CAS  Google Scholar 

  59. Silvera, K. and Lasso, E., Ecophysiology and crassulacean acid metabolism of tropical epiphytes, in Tropical Tree Physiology, Goldstein, G. and Santiago, L., Eds., Cham: Springer, 2016, pp. 25–43.

    Google Scholar 

  60. Silvera, K., Santiago, L., and Winter, K., Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes, Funct. Plant Biol., 2005, vol. 32, no. 5, pp. 397–407.

    Article  CAS  PubMed  Google Scholar 

  61. Silvera, K., Santiago, L., Cushman, J., and Winter, K., Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae, Plant Physiol., 2009, vol. 149, no. 4, pp. 1838–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Silvera, K., Santiago, L., Cushman, J., and Winter, K., The incidence of Crassulacean acid metabolism in the Orchidaceae derived from carbon isotope ratios: a checklist of the flora of Panama and Costa Rica, Bot. J. Linn. Soc., 2010a, vol. 163, no. 2, pp. 194–222.

    Article  Google Scholar 

  63. Silvera, K., Neubig, K., Whitten, M., Williams, N., et al., Evolution along the crassulacean acid metabolism continuum, Funct. Plant Biol., 2010b, vol. 37, no. 11, pp. 995–1010.

    Article  CAS  Google Scholar 

  64. Sipes, D.L. and Ting, I.P., Crassulacean acid metabolism and crassulacean acid metabolism modifications in Peperomia camptotricha, Plant Physiol., 1985, vol. 77, no. 1, pp. 59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sternberg, L.O., Deniro, M.J., and Ting, I.P., Carbon, hydrogen, and oxygen isotope ratios of cellulose from plants having intermediary photosynthetic modes, Plant Physiol., 1984, vol. 74, no. 1, pp. 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Strasburger, E., Noll, F., Schenck, H., and Schimper, A.F.W., Strasburger–Lehrbuch der Botanik für Hochschulen, Zitte, P., Weiler, E.W., Kadereit, J.W., Bresinsky, A., and Körner, C., Eds., Berlin: Spektrum Akademischer Verlag, 2002, 35th ed.

    Google Scholar 

  67. Taylor, A., Zotz, G., Weigelt, P., et al., Vascular epiphytes contribute disproportionately to global centres of plant diversity, bioRxiv, 2021. https://doi.org/10.1101/2021.05.21.445115

  68. Tiunov, A.V., Stable isotopes of carbon and nitrogen in soil ecological studies, Biol. Bull. Russ. Acad. Sci., 2007, vol. 34, no. 4, 395–407.

    Article  CAS  Google Scholar 

  69. Torres-Morales, G., Lasso, E., Silvera, K., et al., Occurrence of crassulacean acid metabolism in Colombian orchids determined by leaf carbon isotope ratios, Bot. J. Linn. Soc., 2020, vol. 193, no. 4, pp. 431–477.

    Article  Google Scholar 

  70. Treseder, K., Davidson, D., and Ehleringer, J., Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte, Nature, 1995, vol. 375, pp. 137–139.

    Article  CAS  Google Scholar 

  71. Wang, X., Gowik, U., Tang, H., et al., Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses, Genome Biol., 2009, vol. 10, no. 6. https://doi.org/10.1186/gb-2009-10-6-r68

  72. Wester, S., Mendieta-Leiva, G., Nauheimer, L., et al., Physiological diversity and biogeography of vascular epiphytes at Río Changuinola, Panama, Flora, 2011, vol. 206, no. 1, pp. 66–79.

    Article  Google Scholar 

  73. Winter, K. and Smith, A., Crassulacean Acid Metabolism, Berlin: Springer-Verlag, 1996.

    Book  Google Scholar 

  74. Winter, K., Wallace, B., Stocker, G., and Roksandic, Z., Crassulacean acid metabolism in Australian vascular epiphytes and some related species, Oecologia, 1983, vol. 57, no. 1, pp. 129–141.

    Article  PubMed  Google Scholar 

  75. Winter, K., Medina, E., Garcia, V., Mayoral, M.A., and Muniz, R., Crassulacean acid metabolism in roots of a leafless orchid Camplocentrum tyrridion Garay & Dunsterv, J. Plant Physiol., 1985, vol. 118, pp. 73–78.

    Article  CAS  PubMed  Google Scholar 

  76. Winter, K., Garcia, M., and Holtum, J., On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoe, and Opuntia, J. Exp. Bot., 2008, vol. 59, no. 7, pp. 1829–1840.

    Article  CAS  PubMed  Google Scholar 

  77. Zapfack, L. and Engwald, S., Biodiversity and spatial distribution of vascular epiphytes in two biotopes of the Cameroonian semi-deciduous rain forest, Plant Ecol., 2008, vol. 195, no. 1, pp. 117–130.

    Article  Google Scholar 

  78. Zhang, J., Liu, L., Shu, J., et al., Transcriptomic evidence of adaptive evolution of the epiphytic fern Asplenium nidus, Int. J. Genomics, 2019, vol. 2019. https://doi.org/10.1155/2019/1429316

  79. Zhang, L., Chen, F., Zhang, G.Q., et al., Origin and mechanism of crassulacean acid metabolism in orchids as implied by comparative transcriptomics and genomics of the carbon fixation pathway, Plant J., 2016, vol. 86, no. 2, pp. 175–185.

    Article  CAS  PubMed  Google Scholar 

  80. Zotz, G., How prevalent is crassulacean acid metabolism among vascular epiphytes?, Oecologia, 2004, vol. 138, no. 2, pp. 184–192.

    Article  PubMed  Google Scholar 

  81. Zotz, G., The systematic distribution of vascular epiphytes—a critical update, Bot. J. Linn. Soc., 2013, vol. 171, pp. 453–481.

    Article  Google Scholar 

  82. Zotz, G. and Ziegler, H., The occurrence of crassulacean acid metabolism among vascular epiphytes from Central Panama, New Phytol., 1997, vol. 137, pp. 223–229.

    Article  CAS  PubMed  Google Scholar 

  83. Zotz, G. and Hietz, P., The ecophysiology of vascular epiphytes: current knowledge, open questions, J. Exp. Bot., 2001, vol. 52, no. 364, pp. 2067–2078.

    Article  CAS  PubMed  Google Scholar 

  84. Zotz, G., Bogusch, W., Hietz, P., and Ketteler, N., Growth of epiphytic bromeliads in a changing world: the effect of elevated CO2 and varying water and nutrient supply, Acta Oecol., 2010, vol. 36, pp. 659–665.

    Article  Google Scholar 

  85. Zotz, G., Weigelt, P., Kessler, M., Kreft, H., and Taylor, A., Epilist 1.0: a global checklist of vascular epiphytes, Ecology, 2021, vol. 102, no. 6. https://doi.org/10.1002/ecy.3326

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Tiunov for help and discussion during the preparation of the article.

Funding

This work was carried out within the State Task of Moscow State University no. 121032500089-1 and within the State Task of the Main Botanical Garden of the Russian Academy of Sciences no. 118021490111-5 on the basis of the Stock Orangery unique scientific installation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Orlov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving humans as subjects.

Additional information

Translated by D. Novikova

APPENDIX A

APPENDIX A

Table 1. List of vascular epiphytes with CAM photosynthesis. Families are in bold, genera are underlined. Next to the families, the number of epiphytic genera with confirmed CAM from the total number of epiphytic genera is indicated. The indicated characteristics of plant leaves (for leafless species—other photosynthetic organs): δ13С, carbon isotopic signature (for species presented in several studies, the isotopic signature is taken from the most recent workf); DH+, noted presence of diurnal change in the titratable acidity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, N.M., Viktorova, V.A. & Eskov, A.K. CAM (Crassulacean Acid Metabolism) Photosynthesis in Vascular Epiphytes. Biol Bull Rev 12, 527–543 (2022). https://doi.org/10.1134/S2079086422050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422050073

Navigation