Skip to main content
Log in

Adaptive Features of the Biology of Closely Related Species of Ixodid Ticks That Determine Their Distribution (Illustrated on the Example of the Taiga Tick Ixodes persulcatus Sch. 1930 and the Castor Bean Tick Ixodes ricinus L. 1758)

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The presented analytical literature review makes it possible to compare the adaptive capabilities of two closely related species of ixodid ticks, Ixodes persulcatus and I. ricinus, the main hosts and vectors of the most common and epidemically significant obligate, transmissible, natural focal infections in Eurasia—ixodic tick-borne borreliosis and tick-borne encephalitis. Studies on the influence of climatic factors on the number and distribution of these ticks and the formation of their fundamental ecological niches, which determine the establishment of the boundaries of their modern ranges, have been considered. The specific adaptive features of I. persulcatus and I. ricinus, their implementation in different geographic conditions (realized ecological niches), and the prerequisites for the formation and change of the sympatric area have been characterized. It is concluded that the variety of ecosystems that ticks of the compared species can inhabit limits the possibility of obtaining, at certain times, a thermal constant of development, i.e., the sum of effective temperatures necessary for egg development and the metamorphoses of larvae and nymphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alekseev, A.N., Sistema kleshch–vozbuditel’ i ee emerdzhentnye svoistva (The Tick–Pathogen System and Its Emergent Properties), St. Petersburg: Zool. Inst., Ross. Akad. Nauk, 1993.

  2. Alekseev, A.N., Impact of global climate change on blood-sucking ectoparasites and pathogens transmitted by them, Vestn. Ross. Akad. Med. Nauk, 2006, no. 3, pp. 21–25.

  3. Alekseev, A.N., Dubinina, H.V., Movile, A.A., et al., Migratory and synanthropic birds and their parasitizing blood-sucking arthropods as components of parasitic systems of foci of transmissible infections, Estestv. Tekh. Nauki, 2008a, no. 6, pp. 81–85.

  4. Alekseev, A.N., Dubinina, H.V., and Yushkova, O.V., Funktsionirovanie parazitarnoi sistemy kleshch–vozbuditel’ v usloviyakh usilivayushchegosya antropogennogo pressa (Functioning of the Tick-Pathogen Parasitic System under Conditions of Increasing Anthropogenic Pressure), St. Petersburg: Sev.-Zap. Tekh. Univ., 2008b.

  5. Alfeev, N.I., Diapause of ixodic ticks, Tr. Voen.-Med. Akad. im. S.M. Kirova, 1948, vol. 44, pp. 50–60.

    Google Scholar 

  6. Alfeev, N.I., Duration and forms of diapause of ixodid ticks related with environmental conditions, Tr. Voen.-Med. Akad. im. S.M. Kirova, 1954, vol. 58, pp. 121–138.

    Google Scholar 

  7. Alkishe, A.A., Peterson, A.T., and Samy, A.M., Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus, PLoS One, 2017, vol. 12, no. 12, pp. 1–14.

    Article  Google Scholar 

  8. Alonso-Carne, J., Garcia-Martin, A., and Estrada-Peña, A., Modeling the phonological relationships of questing immature Ixodes ricinus (Ixodidae) using temperature and NDVI data, Zoonoses Publ. Health, 2015, vol. 63, no. 1, pp. 1–13.

    Google Scholar 

  9. Balashov, Yu.S., Co-evolution of ixodic ticks and terrestrial vertebrates, Parazitologiya, 1989, vol. 23, no. 6, pp. 457–468.

    Google Scholar 

  10. Balashov, Yu.S., Iksodovye kleshchi–parazity i perenoschiki infektsii (Ixodic Ticks—Parasites and Infection Transmitters), St. Petersburg: Nauka, 1998.

  11. Balashov, Yu.S., Parazitizm kleshchei i nasekomykh na nazemnykh pozvonochnykh (Parasitism of Ticks and Insects on Terrestrial Vertebrates), St. Petersburg: Nauka, 2009.

  12. Balashov, Yu.S., Grigor’eva, L.A., and Oliver, Dzh., Reproductive isolation and interspecies hybridization of Ixodes ricinusI. persulcatus (Acarina, Ixodidae) tick group, Entomol. Obozr., 1998, vol. 27, no. 3, pp. 713–721.

    Google Scholar 

  13. Beklemishev, V.N., Biotsenologicheskie osnovy sravnitel’noi parazitologii (Biocenological Principles of Comparative Parasitology), Moscow: Nauka, 1970.

  14. Belozerov, V.N., Life cycles and seasonal adaptations in Ixodidae ticks (Acarina), in Chteniya pamyati N.A. Kholodkovskogo (N.A. Kholodkovskii’s Biennial Memorial Meetings), Leningrad: Nauka, 1976, pp. 53–101.

  15. Belozerov, V.N., Diapause and biological rhythms in ticks, in Physiology of Ticks, Obenchain, F.D. and Gulun, R., Eds., Oxford: Pergamon, 1982, pp. 469–500.

    Google Scholar 

  16. Bespyatova, L.A. and Bugmyrin, S.V., Distribution of the castor bean tick Ixodes ricinus (Acarina, Ixodidae) in the Republic of Karelia (Russia), Zool. Zh., 2021, vol. 100, no. 7, pp. 745–755.

    Google Scholar 

  17. Boeckmann, M. and Joyner, T.A., Old health risks in new places? An ecological niche model for I. ricinus tick distribution in Europe under a changing climate, Health Place, 2014, vol. 30, pp. 70–77.

    Article  PubMed  Google Scholar 

  18. Borisova, O.K., Landscape and climatic changes in the Holocene, Izv. Ross. Akad. Nauk, Ser. Geogr., 2014, no. 2, pp. 5–20.

  19. Bugmyrin, S., Hokkanen, T.J., Romanova, L., et al., Ixodes persulcatus (Schulze 1930) (Acari: Ixodidae) in Eastern Finland, Entomol. Fenn., 2012, vol. 22, no. 4, pp. 268–273.

    Article  Google Scholar 

  20. Bugmyrin, S.V., Nazarova, L.E., Bespyatova, L.A., and Ieshko, E.P., Concerning the problem of the northern limit of Ixodes persulcatus (Acari: Ixodidae) distribution in Karelia, Biol. Bull. (Moscow), 2013a, vol. 40, no. 2, pp. 217–220.

    Article  Google Scholar 

  21. Bugmyrin, S.V., Bespyatova, L.A., Korotkov, Ya.S., et al., Distribution of Ixodes ricinus and I. persulcatus ticks in southern Karelia (Russia), Ticks Tick-Borne Dis., 2013b, vols. 1–2, no. 4, pp. 57–62.

    Article  Google Scholar 

  22. Bugmyrin, S.V., Bespyatova, L.A., and Korotkov, Ya.S., Long-term dynamics of Ixodes persulcatus (Acari: Ixodidae) abundance in the north–west of its range (Karelia, Russia), Exp. Appl. Acarol., 2019, vol. 77, pp. 229–240.

    Article  CAS  PubMed  Google Scholar 

  23. Burenkova, L.A., The results of twenty-years observations of population abundance dynamics of Ixodes ricinus (Acari: Ixodidae) and changes in its infection with pathogens of tick-borne borreliosis in the north of the Kaluga oblast, Med. Parazitol. Parazit. Bolezni, 2012, no. 4, pp. 30–32.

  24. Chernov, Yu.I., Prirodnaya zonal’nost’ i zhivotnyi mir sushi (Natural Zonality and Terrestrial Fauna), Moscow: Mysl’, 1975.

  25. Danchinova, G.A., Yakovchits, N.V., Lyapunov, A.V., et al., Population development of Ixodes persulcatus (Acarina, Ixodidae) in laboratory conditions, Parazitologiya, 2018, vol. 52, no. 1, pp. 70–78.

    Google Scholar 

  26. Daniel, M., The influence of microclimate on the development of parasitic arthropods, Parazitologiya, 1987, vol. 21, no. 3, pp. 429–436.

    CAS  Google Scholar 

  27. Daniel, M., Maly, M., Danielova, V., et al., Abiotic predictors and annual seasonal dynamics of Ixodes ricinus, in the major disease vector of central Europe, Parasites Vectors, 2015, vol. 478, no. 8, pp. 1–12.

    Google Scholar 

  28. Dautel, H., Dippel, C., Kammer, D., et al., Winter activity of Ixodes ricinus in Berlin forest, Int. J. Med. Microbiol., 2008, vol. 289, pp. 50–54.

    Article  Google Scholar 

  29. Dobson, A.D.M. and Randolph, S.E., Modeling the effects of recent changes in climate, host density and acaricide treatments on population dynamics of Ixodes ricinus in the UK, J. Appl. Ecol., 2011, vol. 48, pp. 1029–1037.

    Article  Google Scholar 

  30. Ehrmann, S., Liira, J., Gärtner, S., et al., Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes, BMC Ecol., 2017, vol. 17, no. 1, pp. 1–14.

    Article  Google Scholar 

  31. Estrada-Peña, A. and Venzal, J.M., Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change, J. Med. Entomol., 2007, vol. 44, pp. 1130–1138.

    Article  PubMed  Google Scholar 

  32. Estrada-Peña, A., Martinez, J.M., Acedo, C.S., et al., Phenology of the tick, Ixodes ricinus, in its southern distribution range (central Spain), Med. Vet. Entomol., 2004, vol. 18, pp. 387–397.

    Article  PubMed  Google Scholar 

  33. Estrada-Peña, A., Venzal, J.M., and Sander-Acedo, C., The tick Ixodes ricinus: distributions and climate preference in the western Paleartic, Med. Vet. Entomol., 2006, vol. 20, pp. 189–197.

    Article  PubMed  Google Scholar 

  34. Fedorova, V.G., Population dynamics of ixodid ticks in the zones of land reclamation of Novgorod oblast, Med. Parazitol. Parazit. Bolezni, 1977, no. 6, pp. 712–716.

  35. Filippova, N.A., Fauna SSSR. Paukoobraznye. Tom IV. Vyp. 4. Iksodovye kleshchi podsemeistva Ixodinae (Fauna USSR: Arachnida, Vol. 4, No. 4: Subfamily Ixodinae), Leningrad: Nauka, 1977.

  36. Filippova, N.A., Sympatry of close-related species of ixodic ticks and its possible role in the parasitic systems of natural foci of transmissive diseases, Parazitologiya, 1999, vol. 33, no. 3, pp. 223–241.

    CAS  Google Scholar 

  37. Filippova, N.A., The role of the morphological barrier in the mechanisms of reproductive isolation acting in the areas of sympatry of close-related species Ixodes persulcatusI. pavlovski and I. persulcatusI. ricinus (Ixodidae), Parazitologiya, 2002, vol. 36, no. 6, pp. 257–468.

    Google Scholar 

  38. Filippova, N.A., History of the species range of ixodid ticks, vectors of pathogens with natural nidality (Acari, Ixodidae), as a prerequisite of their intraspecific biodiversity, Entomol. Rev., 2017, vol. 97, no. 2, pp. 255–275.

    Article  Google Scholar 

  39. Fujimoto, K., Effect of photoperiod on the attachment and development of immature Ixodes persulcatus Schulze (Acarina: Ixodidae), Jpn. J. Sanit. Zool., 1993, vol. 44, no. 3, pp. 271–277.

    Article  Google Scholar 

  40. Gern, L. and Humair, P., Ecology of Borrelia burgdorferi sensu lato in Europe, in Lyme Borreliosis: Biology, Epidemiology and Control, Gray, J., Kahl, O., Lane, R.S., and Stanek, G., Eds., New York: CAB Int., 2002, pp. 149–174.

    Google Scholar 

  41. Gern, L., Cadenas, M.F., and Burri, C., Influence of some climatic factor on Ixodes ricinus ticks studied along altitudinal gradients in two geographic regions in Switzerland, Int. J. Med. Microbiol., 2008, vol. 298, pp. 55–59.

    Article  Google Scholar 

  42. Gray, J.S., The development and seasonal activity tick Ixodes ricinus: a vector of Lyme borreliosis, Rev. Med. Veterin. Entomol., 1991, vol. 79, no. 6, pp. 323–333.

    Google Scholar 

  43. Gray, J.S., Dautel, H., Estrada-Peña, A., et al., Effects of climate change on ticks and tick-borne diseases in Europe, Interdiscip. Perspect. Infect. Dis., 2009, vol. 2009, art. ID 593232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gray, J.S., Kahl, O., Lane, R.S., et al., Diapause in ticks of the medically important Ixodes ricinus species complex, Ticks Tick-Borne Dis., 2016, no. 7, pp. 992–1003.

  45. Hancock, P.A., Brackley, R., and Palmer, S.C.F., Modeling the effect of temperature variation on the seasonal dynamics of Ixodes ricinus tick populations, Int. J. Parasitol., 2011, vol. 41, pp. 513–522.

    Article  PubMed  Google Scholar 

  46. Honzakova, E., Development of some species under standard laboratory conditions, Folia Parasitol., 1971, vol. 118, pp. 357–363.

    Google Scholar 

  47. Hvidsten, D., Frafjord, K., Gray, J.S., et al., The distribution limit of the common tick, Ixodes ricinus, and some associated pathogens in north-western Europe, Ticks Tick-Borne Dis., 2020, vol. 11, no. 4, p. e101388.

    Article  Google Scholar 

  48. Isachenko, A.G., Systems and rhythms of zonation, Izv. Vses. Geogr. O-va, 1971, vol. 103, no. 1, pp. 10–26.

    Google Scholar 

  49. Isachenko, A.G. and Shlyapnikov, A.A., Landshafty. Priroda mira (Landscapes. The World Nature), Moscow: Mysl’, 1989.

  50. Ivanov, A.V., Braun, M., and Tataurov, V.A., Seasonal and daily dynamics of the CO2 emission from soils of Pinus koraiensis forests in the South of the Sikhote-Alin Range, Eurasian Soil Sci., 2018, vol. 51, no. 3, pp. 290–295.

    Article  CAS  Google Scholar 

  51. Ivanter, E.V., Osnovy zoogeografii (Fundamentals of Zoogeography), Petrozavodsk: Petrozvodsk. Gos. Univ., 2012.

  52. Ivanter, E.V., Ochrki populyatsionnoi ekologii melkikh mlekopitayushchikh na severnoi periferii areala (The Population Ecology of Small Mammals on the Northern Periphery of the Range), Moscow: KMK, 2018.

  53. Jaenson, T.G.T., Värv, K., Fröjdman, I., et al., First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden, Parasites Vectors, 2016, vol. 9, art. ID 337.

    Article  Google Scholar 

  54. Kachanko, N.I., Development of ixodic ticks at the northern boundaries of ranges in Amur oblast, Parazitologiya, 1978, vol. 12, no. 3, pp. 218–225.

    CAS  Google Scholar 

  55. Khizhinskii, P.G., Activation, abundance, and duration of active life of Ixodes persulcatus ticks in the forests of Krasnoyarsk krai, Med. Parazitol. Parazit. Bolezni, 1963, no. 1, pp. 6–13.

  56. Kislenko, G.S. and Korotkov, Yu.S., Forest tick Ixodes ricinus (Ixodidae) in the foci of ixodic tick-borne borreliosis in the northwest of Moscow region, Parazitologiya, 2002, vol. 36, no. 6, pp. 447–456.

    CAS  Google Scholar 

  57. Korenberg, E.I., Biokhorologicheskaya struktura vida (na primere taezhnogo kleshcha) (Biochorological Structure of a Species by Example of Taiga Tick), Moscow: Nauka, 1979.

  58. Korenberg, E.I., Taxonomy, phylogenetic relations, and forming of spirochete of genus Borrelia transmitting by ixodic ticks, Usp. Sovrem. Biol., 1996, vol. 116, no. 4, pp. 389–406.

    Google Scholar 

  59. Korenberg, E.I., Seasonal population dynamics of Ixodes tick and tick-borne encephalitis virus, Exp. Appl. Acarol., 2000, vol. 24, pp. 665–681.

    Article  CAS  PubMed  Google Scholar 

  60. Korenberg, E.I., Recent epidemiology of tick-borne encephalitis: an effect climate change? Adv. Virus Res., 2009, vol. 74, pp. 123–144.

    Article  CAS  PubMed  Google Scholar 

  61. Korenberg, E.I. and Kovalevskii, Yu.V., The general scheme of tick-borne encephalitis virus circulation, Zool. Zh., 1977, vol. 7, no. 10, pp. 1467–1478.

    Google Scholar 

  62. Korenberg, E.I. and Kovalevskii, Yu.V., Raionirovanie areala kleshchevogo entsefalita (The Zoning of the Area of Tick-Born Encephalitis), Itogi Nauki Tekh., Ser.: Med. Geogr., vol. 11, Moscow: Vses. Inst. Nauchn. Tekh. Inf., 1981.

  63. Korenberg, E.I. and Lebedeva, N.N., Geographic variability and types of seasonal activity of Ixodes persulcatus P. Sch., Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1974, vol. 79, no. 4, pp. 34–43.

    Google Scholar 

  64. Korenberg, E.I., Kovalevskii, Y.V., Livin, M.L., and Shchyogoleva, T.V., The prevalence of Borrelia burgdorferi sensu lato in Ixodes persulcatus and I. ricinus ticks and the zone of their sympatry, Folia Parasitol., 2001, vol. 48, pp. 63–68.

    Article  CAS  Google Scholar 

  65. Korenberg, E.I., Pomelova, V.G., and Osin, N.S., Prirodnoochagovye infektsii, peredayushchiesya iskodovymi kleshchami (Natural Foci of Infections Transmitted by Ixodic Ticks), Moscow: Nauka, 2013.

  66. Korenberg, E.I., Sirotkin, M.B., and Kovalevskii, Yu.V., A general scheme of circulation of ixodid tick-borne borrelioses pathogens in the natural foci of Eurasia, Entomol. Rev., 2016, vol. 96, no. 4, pp. 484–499.

    Article  Google Scholar 

  67. Korotkov, Yu.S., The gradual variability of the parasitic system of tick-borne encephalitis, Vopr. Virusol., 2005, vol. 50, no. 3, pp. 52–56.

    PubMed  Google Scholar 

  68. Korotkov, Yu.S., Ecology of taiga tick (Ixodes persulcatus Schulze, 1930) in conditions of changing climate of Eurasia, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: Zool. Inst., Russ. Acad. Sci., 2009.

  69. Korotkov, Yu.S., Geographic variability of morphogenetic diapause in larvae and nymphs of the taiga tick Ixodes persulcatus (Acarina, Ixodidae), Entomol. Rev., 2016, vol. 96, no. 5, pp. 634–645.

    Article  Google Scholar 

  70. Korotkov, Yu.S. and Okulova, N.M., Chronological structure of the abundance of taiga ticks in Primorskii krai, Parazitologiya, 1999, vol. 33, no. 3, pp. 257–266.

    Google Scholar 

  71. Korotkov, Ya., Kozlova, T., and Kozlovskay, L., Observations of changes in abundance of questing Ixodes ricinus, castor been tick over a 35-year period in the eastern part of its range (Russia, Tula region), Med. Vet. Entomol., 2015, vol. 2, pp. 159–165.

    Google Scholar 

  72. Lees, A.D. and Milne, A., The seasonal and diurnal activities of individual sheep tick Ixodes ricinus, Parasitology, 1951, vol. 41, nos. 3–4, pp. 189–208.

    Article  CAS  PubMed  Google Scholar 

  73. Leonova, G.N., Maistrovskaya, O.S., and Borisevich, V.B., Antigenemia in people infected with tick-borne encephalitis virus, Vopr. Virusol., 1996, vol. 41, no. 6, pp. 260–263.

    CAS  PubMed  Google Scholar 

  74. Li, S., Heyman, P., Cocher, C., et al., A multi-level analysis of the relationship between environmental factors and questing Ixodes ricinus dynamics in Belgium, Parasites Vectors, 2012, vol. 149, no. 5, pp. 1–11.

    Google Scholar 

  75. Lutta, A.S., Kheisin, E.M., and Shul’man, R.S., Iksodievye kleshchi KASSR i mery bor’by s nimi (Ixodic Ticks in Karelian ASSR and Its Elimination), Petrozavodsk: Karel. ASSR, 1959.

  76. L’vov, D.K. and Lebedev, A.D., Ekologiya arbovirusov (Ecology of Arboviruses), Moscow: Meditsina, 1974.

  77. MacLeod, J., The seasonal and annual incidence of the sheep tick, Ixodes ricinus, in Britain, Bull. Entomol. Res., 1939, vol. 30, no. 1, pp. 103–118.

    Article  Google Scholar 

  78. Markov, K.K., Paleogegrafiya (Paleogeography), Moscow: Mosk. Gos. Univ., 1960.

    Google Scholar 

  79. Matyushkin, E.N., European-East Asian breaks of the ranges of terrestrial vertebrates, Zool. Zh., 1976, vol. 55, no. 9, pp. 1277–1290.

    Google Scholar 

  80. Medlock, J., Hansford, K.M., Bormane, A., et al., Driving forces for changes in geographical distribution of Ixodes ricinus tick in Europe, Parasites Vectors, 2013, vol. 6, art. ID 1.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Medvedev, S.G., Shapar’, A.O., Grigor’eva, L.G., et al., Biological risks of the development of agglomerations of St. Petersburg and Leningrad oblast, Uch. Zap. Ross. Gos. Gidrometeorol. Univ., 2016, no. 43, pp. 223–235.

  82. Nikitin, A.Ya. and Antonova, A.M., Uchet, prognozirovanie i regulyatsiya chislennosti taezhnogo kleshcha v rekreatsionnoi zone g. Irkutska (Accounting, Forecasting, and Regulation of the Abundance of Taiga Ticks in the Recreational Zone of Irkutsk), Irkutsk: Irkutsk. Gos. Univ., 2005.

  83. Okulova, N.M., Biologicheskie vzaimosvyazi v lesnykh ekosistemakh (na primere prirodnykh ochagov kleshchevogo entsefalita) (Biological Relations in Forest Ecosystems by Example of Natural Foci of Tick-Born Encephalitis), Moscow: Nauka, 1986.

  84. Osipova, T.N., Grigor’eva, L.A., Samoilova, E.P., et al., The influence of meteorological factors on the activity of the taiga tick (Ixodes persulcatus Schulze, Ixodidae) in St. Petersburg and its vicinities, Parazitologiya, 2017, vol. 51, no. 2, pp. 143–157.

    CAS  Google Scholar 

  85. Pedersen, B., Jenkins, A., and Kjelland, V., Tick-borne pathogens in Ixodes ricinus ticks collected from migratory birds in southern Norway, PLoS One, 2020, vol. 15, no. 4, p. e0230579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Perret, J.-L., Guigoz, E., Rais, O., and Gern, L., Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland), Parasitol. Res., 2000, vol. 86, pp. 554–557.

    Article  CAS  PubMed  Google Scholar 

  87. Pokladníková, H., Roznovsy, J., and Streda, T., Evaluation of soil temperatures at agroclimatological station Pohorelice, Soil Water Res., 2008, vol. 3, no. 4, pp. 223–230.

    Article  Google Scholar 

  88. Pomerantsev, B.I., Fauna SSSR. Paukoobraznye. Tom 4. Vyp. 2. Iskodovye kleshchi (Ixodidae) (Fauna of the USSR: Arachnida, Vol. 4, No. 2: Ixodic Ticks (Ixodidae)), Leningrad: Akad. Nauk SSSR, 1950.

  89. Popov, I.O., Climate-caused changes in the autecological ranges of ixodic ticks Ixodes ricinus and Ixodes persulcatus in Russia and neighboring countries, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Timiryazev Agric. Acad., 2016.

  90. Popov, V.M., Iksodovye kleshchi (Ixodic Ticks), Tomsk: Tomsk. Gos. Univ., 1962.

  91. Porretta, D., Mastrantonio, V., Amendolia, S., et al., Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modeling, Parasites Vectors, 2013, vol. 6, art. ID 271.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Prostakov, N.I. and Golub, V.B., Bioekologiya (Bioecology), Voronezh: Voronezh. Gos. Univ., 2014.

    Google Scholar 

  93. Randolph, S.E., Tick-ecology: processes and patterns behind the epidemiological risk posed by Ixodid tick as vectors, Parasitology, 2004, vol. 129, pp. 37–64.

    Article  Google Scholar 

  94. Randolph, S.E. and Rogers, D.E., Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change, Proc. R. Soc. B, 2000, vol. 267, pp. 1741–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Revich, B.A., Climate change in the Arctic as a new risk factor for public health, Arkt. Ved., 2014, vol. 9, no. 1, pp. 92–99.

    Google Scholar 

  96. Ribeiro, R., Eze, J.I., Gilbert, L., et al., Using imperfect data in predictive mapping of vectors: a regional example of Ixodes ricinus distribution, Parasites Vectors, 2019, vol. 12, no. 536, pp. 1–13.

    Article  CAS  Google Scholar 

  97. Rogers, D.E. and Randolph, S.E., Climate change and vector-borne diseases, Adv. Parasitol., 2006, vol. 62, pp. 345–381.

    Article  CAS  PubMed  Google Scholar 

  98. Rousseau, R., McGrath, G., McMahon, B.J., and Vanwambeke, S.O., Multi-criteria decision analysis to model Ixodes ricinus habitat suitability, EcoHealth, 2017, vol. 14, pp. 591–602.

    Article  PubMed  Google Scholar 

  99. Rubina, M.A. and Babenko, L.V., Duration of development (without diapause) of larvae and nymphs Ixodes persulcatus Sch. in natural conditions and its key factors, Parazitologiya, 1968, vol. 11, no. 1, pp. 10–17.

    Google Scholar 

  100. Severtsov, A.S., Evolyutsionnaya ekologiya pozvonochnykh zhivotnykh (Evolutionary Ecology of Vertebrates), Moscow: KMK, 2013.

  101. Shilov, I.A., Ekologiya (Ecology), Moscow: Vysshaya Shkola, 1997.

    Google Scholar 

  102. Sirotkin, M.B. and Korenberg, E.I., Influence of abiotic factors on different developmental stages of the taiga tick Ixodes persulcatus and the sheep tick Ixodes ricinus, Entomol. Rev., 2018, vol. 98, no. 4, pp. 496–513.

    Article  Google Scholar 

  103. Sirotkin, M.B. and Korenberg, E.I., Influence of abiotic factors on infectious agents environmentally associated with Ixodidae ticks on the example of borrelia and tick-borne encephalitis virus, Biol. Bull. Rev., 2019, vol. 9, no. 6, pp. 543–561.

    Article  Google Scholar 

  104. Soleng, A., Edgar, K.S., Paulsen, K.M., et al., Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the arctic circle region of northern Norway, Ticks Tick-Borne Dis., 2018, vol. 9, pp. 97–103.

    Article  CAS  PubMed  Google Scholar 

  105. Schulz, M., Mahling, M., and Pfister, K., Abundance and seasonal activity of questing Ixodes ricinus ticks in their natural habitats in southern Germany in 2011, J. Vector Ecol., 2014, vol. 39, no. 1, pp. 56–65.

    Article  PubMed  Google Scholar 

  106. Sprong, H., Hofhuis, A., Gassner, F., et al., Circumstantial evidence for an increase in the total number and activity of borrelia-infected Ixodes ricinus in the Netherlands, Parasites Vectors, 2012, vol. 5, no. 294, pp. 1–11.

    Article  Google Scholar 

  107. Taezhnyi kleshch Ixodes persulcatus Schulze (Acarina, Ixodidae): morfologiya, sistematika, ekologiya, meditsinskoe znachenie (Taiga Tick Ixodes persulcatus Schulze (Acarina, Ixodidae): Morphology, Systematics, Ecology, and Medical Role), Filippova, N.A., Ed., Leningrad: Nauka, 1985.

    Google Scholar 

  108. Tokarevich, K.N., Vershinskii, B.V., and Perfil’ev, P.P., Ocherki landshaftnoi geografii zooantroponozov. Evropeiskii sever SSSR (Landscape Geography of Zooanthroponoses: European North of the USSR), Leningrad: Nauka, 1975.

  109. Tokarevich, N.K., Tronin, A.A., Blinova, O.V., et al., The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia, Global Health Act., 2011, vol. 4, pp. 8448–8459.

    Article  Google Scholar 

  110. Tolstenkov, O.O., Alekseev, A.N., and Dubinina, E.V., Hematophagous biting-lice (Insecta, Phthiraptera, Amblycera) and ixodic ticks (Acari, Ixodidae) of migratory birds of the Curonian Spit, Povolzh. Ekol. Zh., 2009, no. 4, pp. 327–336.

  111. Tronin, A.A., Tokarevich, N.K., and Gnativ, B.R., Abundance of Ixodes persulcatus tick in Komi republic as a function of an air temperature, Infekts. Immun., 2019, vol. 9, nos. 5–6, pp. 811–816.

    Google Scholar 

  112. Votyakov, V.I., Zlobin, V.I., and Mishaeva, N.P., Kleshchevye entsefality Evrazii (voprosy ekologii, molekulyarnoi epidemiologii, nozologii, evolyutsii) (Tick-Borne Encephalitis of Eurasia: Ecology, Molecular Epidemiology, Nosology, and Evolution), Novosibirsk: Nauka, 2002.

  113. Vshivkova, O.A., Komarov, A.S., Frolov, P.V., and Khlebopros, R.G., The role of habitat heterogeneity in the management of the population of ixodic ticks: cellular-automaton model, Probl. Upr., 2013, no. 4, pp. 57–63.

  114. Yasyukevich, V.V., Kazakova, E.V., Popov, I.O., and Semenov, S.M., Distribution of Ixodes ricinus L., 1758 and Ixodes persulcatus Shulze, 1930 (Parasitoformes, Ixodidae) in Russia and adjacent countries in view of observable climate changes, Dokl. Earth Sci., 2009, vol. 427, no. 2, pp. 1030–1034.

    Article  Google Scholar 

  115. Zemskaya, A.A., Seasonal activity of adult tick Ixodes persulcatus P. Sch. in the eastern part of the Russian plain, Folia Parasitol., 1984, vol. 31, pp. 269–276.

    Google Scholar 

  116. Zolotov, P.E., Paulkina, M.K., Moravek, K.L., et al., Ecology of ixodic ticks in Leningrad oblast, Parazitologiya, 1974, vol. 8, no. 2, pp. 116–122.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Korenberg or M. B. Sirotkin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by A. Ostyak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenberg, E.I., Sirotkin, M.B. & Kovalevskii, Y.V. Adaptive Features of the Biology of Closely Related Species of Ixodid Ticks That Determine Their Distribution (Illustrated on the Example of the Taiga Tick Ixodes persulcatus Sch. 1930 and the Castor Bean Tick Ixodes ricinus L. 1758). Biol Bull Rev 11, 602–615 (2021). https://doi.org/10.1134/S2079086421060050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421060050

Keywords:

Navigation