Skip to main content
Log in

Protective Effect of Short Peptides on the Insect Nervous System

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

An urgent task in modern biology and medicine is the study of the biologically active substances that can correct functional cellular activity that has been weakened by various pathologic processes. The neuroprotective properties of short peptides are analyzed in the review with a study of the conditioned reflex in the honey-bee Apis mellifera L. EDR and AEDG peptides stimulated their short-term and long-term memory. EDR peptide also increases the locomotor activity in the fly Drosophila melanogaster in a model of Parkinson disease for a decrease in the expression level of the gene limk1, and it also recovers the short-term memory in Agnst3 mutant. The discovery of the stimulating effect of EDR and AEDG peptides on the function of the central nervous system served as the basis for the testing of drugs for the treatment of pathology of the central nervous system. The parallelism of neuroprotective effect in two animal groups, mammals and insects, indicated the existence of a common, possibly the oldest, mechanism of peptide regulation of the life activities of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Asok, A., Leroy, F., Rayman, J.B., et al., Molecular mechanisms of the memory trace, Trends Neurosci., 2019, vol. 42, no. 1, pp. 14–22.

    Article  CAS  Google Scholar 

  2. Balashova, S.N., Zhernakov, G.L., and Dudkov, A.V., The use of peptide bioregulators in the elderly with psychoemotional disorders, Usp. Gerontol., 2008, vol. 21, no. 3, pp. 448–452.

    CAS  Google Scholar 

  3. Bitterman, M.E., Menzel, R., Fietz, A., et al., Classical conditioning of proboscis extension in honeybees (Apis mellifera), J. Comp. Psychol., 1983, vol. 97, no. 2, pp. 107–119.

    Article  CAS  Google Scholar 

  4. Bonini, N.M. and Fortini, M.E., Human neurodegenerative disease modeling using Drosophila, Ann. Rev. Neurosci., 2003, vol. 26, pp. 627–656.

    Article  CAS  Google Scholar 

  5. Burlakova, E.E., Specific action of ultra-low doses of biologically active substances and low-intensity physical factors, Ross. Khim. Zh., 1999, vol. 43, no. 5, pp. 3–11.

    CAS  Google Scholar 

  6. Chalisova, N.I., Penniyainen, V.A., and Nozdrachev, A.D., The stimulatory effect of small doses of inhibitors in organotypic culture of nervous and lymphoid tissues, Dokl. Biol. Sci., 2002, vol. 383, nos. 1–6, pp. 96–98.

    Article  CAS  Google Scholar 

  7. Chalisova, N.I., Penniyainen, V.A., Komashnya, A.V., et al., Study of the effect of small doses of biologically active substances on the nervous and lymphoid tissues by the organotypic culture method, Klin. Patofiziol., 2004, no. 1, pp. 25–29.

  8. Chalisova, N.I., Lopatina, N.G., Kamyshev, N.G., et al., Stimulating effect of AEDG tetrapeptide on morphological and functional characteristics of nervous tissue, Mol. Med., 2020, vol. 18, no. 4, pp. 47–54.

    Google Scholar 

  9. Chernova, I.A., Zhilinskii, D.V., Chalisova, N.I., et al., Isolation of peptides from calf brain tissue and evaluation of their tissue-specific and stimulatory activity, Pharm. Chem. J., 2017, vol. 51, no. 6, pp. 434–438.

    Article  CAS  Google Scholar 

  10. Doronkin, S. and Reiter, L.T., Drosophila orthologues to human disease genes: an update on progress, Prog. Nucleic Acid Res. Mol. Biol., 2008, vol. 82, pp. 1–32.

    Article  CAS  Google Scholar 

  11. Fedoreyeva, L.I., Kireev, I.I., Khavinson, V.Kh., et al., Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA in vitro, Biokhimiya (Moscow), 2011a, vol. 76, no. 11, pp. 1505–1516.

    Google Scholar 

  12. Fedoreyeva, L.I., Kireev, I.I., Khavinson, V.Kh., et al., Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA, Biochemistry (Moscow), 2011b, vol. 76, no. 11, pp. 1210–1219.

    CAS  Google Scholar 

  13. Fedoreyeva, L.I., Smirnova, T.A., Kolomijtseva, G.Ya., et al., Interaction of short peptides with FITC-labeled wheat histones and their complexes with deoxyribooligonucleotides, Biochemistry (Moscow), 2013, vol. 78, no. 2, pp. 166–175.

    CAS  PubMed  Google Scholar 

  14. Guryanov, S.A., Kirilina, E.A., Khaidukov, S.V., et al., Fluorescently labeled differentiating myelopeptide-4: specific binding to and penetration into target cells, Russ. J. Bioorg. Chem., 2006, vol. 32, pp. 517–520.

    Article  CAS  Google Scholar 

  15. Ivko, O.M. and Trofimova, S.V., Sport i dolgoletie (Sports and Longevity), St. Petersburg: Falcon Crest, 2008.

  16. Khavinson, V.Kh., Peptidy. Genom. Stareneie (Peptides, Genome, and Aging), Moscow: Ross. Akad. Nuk, 2020.

  17. Khavinson, V.Kh. and Anisimov, V.N., Peptidnye bioregulyatory i stareneie (Peptide Bioregulators and Aging), St. Petersburg: Nauka, 2003.

  18. Khavinson, V.K. and Kvetnoii, I.M., Peptide bioregulators inhibit apoptosis, Bull. Exp. Biol. Med., 2000, vol. 130, no. 12, pp. 1175–1176.

    CAS  PubMed  Google Scholar 

  19. Khavinson, V.K., Lezhava, T.A., and Malinin, V.V., Effects of short peptides on lymphocyte chromatin in senile subjects, Bull. Exp. Biol. Med., 2004, vol. 137, no. 1, pp. 78–81.

    Article  CAS  Google Scholar 

  20. Khavinson, V.Kh., Viner-Usmanova, I.A., Trofimova, S.V., et al., Metodika povysheniya rezervnykh vozmozhnostei organizma sportsmenok vysokoi kvalifikatsii s pomoshch’yu peptidnykh bioregulyatorov (Increasing of the Reserve Capacities of the Body of Highly Qualified Athletes Using Peptide Bioregulators), St. Petersburg: S.-Peterb. Inst. Bioregul. Gerontol., 2010.

  21. Khavinson, V.K., Solov’ev, A.Y., Zhilinskii, D.V., et al., Epigenetic aspects of peptide-mediated regulation of aging, Adv. Gerontol., 2012, vol. 2, no. 4, pp. 277–286.

    Article  Google Scholar 

  22. Khavinson, V.Kh., Soloviev, A.Yu., Tarnovskaya, S.I., et al., Mechanism of biological activity of short peptides: cell penetration and epigenetic regulation of gene expression, Biol. Bull. Rev., 2013, vol. 3, no. 6, pp. 451–455.

    Article  Google Scholar 

  23. Khavinson, V.Kh., Lin’kova, N.S., Tarnovskaya, S.I., et al., Short peptides stimulate serotonin expression in cells of brain cortex, Bull. Exp. Biol. Med., 2014, vol. 157, no. 1, pp. 77–80.

    Article  CAS  Google Scholar 

  24. Khavinson, V.Kh., Lopatina N.G., Chalisova, N.I., et al., Effect of pinealon tripeptide on the development of conditioned reflex activity in a honey bee, Fundam. Issled., 2015a, vol. 2, no. 2, pp. 491–496.

    Google Scholar 

  25. Khavinson, V.Kh., Chalisova, N.I., Lin’kova, N.S., et al., The dependence of the tissue-specific action of peptides on the number of amino acids in their composition, Fundam. Issled., 2015b, vol. 2, no. 3, pp. 497–503.

    Google Scholar 

  26. Khavinson, V.Kh., Lin’kova, N.S., and Tarnovskaya, S.I., Short peptides regulate gene expression, Bull. Exp. Biol. Med., 2016, vol. 162, no. 2, pp. 288–292.

    Article  CAS  Google Scholar 

  27. Khavinson, V.K., Kopylov, A.T., Vaskovsky, B.V., et al., Identification of peptide AEDG in the polypeptide complex of the pineal gland, Bull. Exp. Biol. Med., 2017a, vol. 164, no. 1, pp. 41–43.

    Article  CAS  Google Scholar 

  28. Khavinson, V.Kh., Linkova, N.S., Kukanova, E.O., et al., Neuroprotective effect of EDR peptide in mouse model of Huntington disease, J. Neurol. Neurosci., 2017b, vol. 8, no. 1, pp. 1–11.

    Article  Google Scholar 

  29. Kozina, L.S., Arutyunyan, A.V., Stvolinskii, S.L., et al., Assessment of the biological activity of regulatory peptides in model experiments in vitro, Usp. Gerontol., 2008, vol. 219, no. 1, pp. 68–73.

    Google Scholar 

  30. Kraskovskaya, N.A., Kukanova, E.O., Linkova, N.S., et al., Tripeptides restore the number of neuronal spines under conditions of in vitro modeled Alzheimer’s disease, Bull. Exp. Biol. Med., 2017, vol. 163, no. 4, pp. 550–553.

    Article  CAS  Google Scholar 

  31. Lopatina, N.G., Ryzhova, I.V., Chesnokova, E.G., et al., L-glutamate receptor in the central nervous system of the honeybee Apis mellifera and its role in the process of acquisition of conditional reflex and memory traces, Zh. Evol. Biokhim. Fiziol., 1997, vol. 33, no. 6, pp. 506–512.

    Google Scholar 

  32. Menzel, R., The insect mushroom body, an experience-dependent recording device, J. Physiol. (Paris), 2014, vol. 108, nos. 2–3, pp. 84–95.

    Article  Google Scholar 

  33. Milyutina, Yu.P., Kozina, L.S., Arutyunyan, A.A., et al., Effect of peptide preparations of the pineal gland on proliferative processes in organotypic culture of the preoptic region of the hypothalamus, Usp. Gerontol., 2007, vol. 20, no. 4, pp. 61–63.

    Google Scholar 

  34. Ostrovskaya, R.U., Gruden, M.A., and Bobkova, N.A., The nootropic and neuroprotective proline-containing dipeptide noopept restores spatial memory and increases immunoreactivity to amyloid in an Alzheimer’s disease model, J. Psychopharmacol., 2007, vol. 6, pp. 611–619.

    Article  Google Scholar 

  35. Petrova, E.S., Vimentin and glial fibrillar acidic protein in ectopic neurotransplant cells of rat neocortex, Morfologiya, 2011, vol. 139, no. 2, pp. 22–26.

    CAS  Google Scholar 

  36. Pfleger, C.M. and Reiter, L.T., Recent efforts to model human diseases in vivo in Drosophila, Fly (Austin), 2008, vol. 2, no. 3, pp. 129–132.

    Article  Google Scholar 

  37. Popugaeva, E. and Bezprozvanny, I., Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease, Front. Mol. Neurosci., 2013, vol. 6, pp. 1–7.

    Article  Google Scholar 

  38. Russo, L.C., Asega, A.F., Castro, L.M., et al., Natural intracellular peptides can modulate the interactions of mouse brain proteins and thimet oligopeptidase with 14-3-3ε and calmodulin, Proteomics, 2012, vol. 12, no. 17, pp. 2641–2655.

    Article  CAS  Google Scholar 

  39. Ryzhak, A.P., Chalisova, N.I., Lin’kova, N.S., et al., Peptide regulation of cells renewal processes in kidney tissue cultures from young and old animals, Bull. Exp. Biol. Med., 2015, vol. 159, no. 1, pp. 124–127.

    Article  Google Scholar 

  40. Ryzhak, G.A., Malinin, V.V., and Platonova, T.N., Korteksin i regulyatsiya funktsii golovnogo mozga (Cortexin and the Regulation of Brain Functions), St. Petersburg: Foliant, 2001.

  41. Savvateeva-Popova, E.V., Zhuravlev, A.V., Brázda, V., et al., Drosophila model for the analysis of genesis of LIM-kinase 1-dependent Williams–Beuren syndrome cognitive phenotypes: INDELs, transposable elements of the Tc1/mariner superfamily and microRNAs, Front. Genet., 2017, vol. 8, pp. 1–13.

    Article  Google Scholar 

  42. Umnov, R.S., Lin’kova, N.S., and Khavinson, V.K., Peptides stimulate expression of signal molecules in neuronal cultures from animals of different age, Bull. Exp. Biol. Med., 2014, vol. 157, no. 5, pp. 701–704.

    Article  CAS  Google Scholar 

  43. Vanyushin, B.F. and Khavinson, V.Kh., Short biologically active peptides as epigenetic modulators of gene activity, in Epigenetics—A Different Way of Looking at Genetics, Doerfler, W. and Böhm, P., Eds., Cham: Springer-Verlag, 2016, pp. 69–90.

    Google Scholar 

  44. Zakutskii, A.N., Chalisova, N.I., Ryzhak, G.A., et al., Tissue-specific effect of synthetic bioregulatory peptides in organotypic tissue culture of young and old rats, Usp. Gerontol., 2006, vol. 19, no. 1, pp. 93–96.

    CAS  Google Scholar 

  45. Zhang H., Li, Q., Graham, R.K., et al., Fulllength mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington’s disease, Neurobiol. Dis., 2008, vol. 31, pp. 80–88.

    Article  CAS  Google Scholar 

  46. Zhurkovich, I.K., Kovrov, N.G., Ryzhak, G.A., et al., Identification of short peptides as part of polypeptide complexes isolated from animal organs, Usp. Sovrem. Biol., 2020, vol. 140, no. 2, pp. 140–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Chalisova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalisova, N.I., Ryzhak, G.A. & Ivko, O.M. Protective Effect of Short Peptides on the Insect Nervous System. Biol Bull Rev 11, 597–601 (2021). https://doi.org/10.1134/S2079086421060025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421060025

Keywords:

Navigation