Skip to main content
Log in

Actual Concepts of Higher Fungi’s Toxins: Simple Nitrogen-Containing Compounds

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Higher fungi represent a group of living organisms that remain poorly studied in terms of mycology and biochemistry. Among their secondary metabolites, toxic compounds are of particular interest, since they may be an etiological factor causing acute food intoxications, i.e., mycetismi. This review summarizes the information on the fungal species distributed in Russia and the toxicological properties of some of them as producers of simple nitrogen-containing compounds. The role of individual substances in toxidromes is discussed. The article considers a number of minor components that may have insignificant individual effects due to their low concentrations but may make a significant contribution to the modification of the toxic effect caused by a primary compound. A summary of data on new syndromes associated with toxins of higher fungi is presented. It was concluded that the combined effects of toxins can play an important role in intoxication with nitrogen-containing compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Adams, A.M., Kaplan, N.A., Wei, Z., et al., In vivo production of psilocybin in E. coli, Metab. Eng., 2019, vol. 56, pp. 111–119.

    Article  CAS  PubMed  Google Scholar 

  2. Ainsworth et Bisby’s Dictionary of the Fungi, Kirk, P.M., Cannon, P.F., Minter, D.W., and Stalpers, J.A., Eds., Wallingford: CAB Int., 2008, 10th ed.

    Google Scholar 

  3. Anichkov, S.V., Izbiratel’noe deistvie mediatornykh sredstv (Selective Effect of Mediator Drugs), Leningrad: Meditsina, 1974.

  4. Antkowiak, R. and Antkowiak, W.Z., Alkaloids from mushrooms, in The Alkaloids: Chemistry and Pharmacology, Brossi, A., Ed., San Diego: Academic, 1991, chap. 2, pp. 189–340.

    Google Scholar 

  5. Arłukowicz-Grabowska, M., Wójcicki, M., Raszeja-Wyszomirska, J., et al., Acute liver injury, acute liver failure and acute on chronic liver failure: a clinical spectrum of poisoning due to G. esculenta, Ann. Hepatol., 2019, vol. 18, no. 3, pp. 514–516.

    Article  PubMed  Google Scholar 

  6. Beuhler, M.C., Overview of mushroom poisoning, in Critical Care Toxicology, Brent, J., Burkhart, K., Dargan, P., Eds., Cham: Springer-Verlag, 2016, chap. 1, pp. 1–26.

    Google Scholar 

  7. Blei, F., Dörner, S., Fricke, J., et al., Simultaneous production of psilocybin and a cocktail of β carboline monoamine oxidase inhibitors in “magic” mushrooms., Eur. Chem. J., 2020, vol. 26, no. 3, pp. 729–734.

    Article  CAS  Google Scholar 

  8. Bourinet, E., Francois, A., and Laffray, S., T-type calcium channels in neuropathic pain, Pain, 2016, vol. 157, no. 1, pp. 15–22.

    Article  Google Scholar 

  9. Brvar, M., Možina, M., and Bunc, M., Prolonged psychosis after Amanita muscaria ingestion, Wien. Klin. Wochenschr., 2006, vol. 118, nos. 9–10, pp. 294–297.

    Article  PubMed  Google Scholar 

  10. Buvall, L., Khramova, A., Najar, D., et al., Orellanine specifically targets renal clear cell carcinoma, Oncotarget, 2017, vol. 8, pp. 91085−91098.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, H.P. and Liu, J.K., Secondary metabolites from higher fungi, in Progress in the Chemistry of Organic Natural Products, Kinghorn, A., Falk, H., Gibbons, S., and Kobayashi, J., Eds., Cham: Springer-Verlag, 2017, pp. 1−201.

    Google Scholar 

  12. Chilton, W.S. and Ott, J., Toxic metabolites of Amanita pantherina, A. cothurnata, A. muscaria and other Amanita species, Lloydia, 1976, vol. 39, nos. 2–3, pp. 150–157.

    CAS  PubMed  Google Scholar 

  13. Dinis-Oliveira, R.J., Soares, M., Rocha-Pereira, C., et al., Human and experimental toxicology of orellanine, Hum. Exp. Toxicol., ‎2016, vol. 35, no. 9, pp. 1016–1029.

    Article  CAS  PubMed  Google Scholar 

  14. Dulenko, V.I., Komissarov, I.V., and Dolzhenko, A.T., Beta-karboliny. Khimiya i neirobiologiya (Chemistry and Neurobiology of Beta Carbolines), Kiev: Naukova Dumka, 1992.

  15. Esposito, P., La Porta, E., Calatroni, M., et al., Renal involvement in mushroom poisoning: the case of Orellanus syndrome, Hemodial. Int., 2015, vol. 19, no. 4, pp. 11–15.

    Article  Google Scholar 

  16. Funga Nordica: Agaricoid, Boletoid, Clavarioid, Cyphelloid and Gastroid Genera, Knudsen, H., and Vesterholt, J., Eds., Copenhagen: Nordsvamp, 2012.

    Google Scholar 

  17. Fushiya, S., Sato, S., and Nozoe, S.L., Stizolobic acid and L-stizolobinic acid from Cl. acromelalga, precursors of acromelic acid, Phytochemistry, 1992, vol. 31, no. 7, pp. 2337–2339.

    Article  CAS  Google Scholar 

  18. Geiger, H.A., Wurst, M.G., and Daniels, R.N., Dark classics in chemical neuroscience: psilocybin, ACS Chem. Neurosci., 2018, vol. 9, no. 10, pp. 2438–2447.

    Article  CAS  PubMed  Google Scholar 

  19. Geissler, T., Brandt, W., Porzel, A., et al., Acetylcholinesterase inhibitors from the toadstool C. infractus, Bioorg. Med. Chem., 2010, vol. 18, no. 6, pp. 2173–2177.

    Article  CAS  PubMed  Google Scholar 

  20. Gosselin, R.E., Smith, R.P., and Hodge, H.C., Clinical Toxicology of Commercial Products, Baltimore: Williams and Wilkins, 1984, 5th ed.

    Google Scholar 

  21. Govorushko, S., Rezaee, R., Dumanov, J., and Tsatsakis, A., Poisoning associated with the use of mushrooms: a review of the global pattern and main characteristics, Food Chem. Toxicol., 2019, vol. 128, pp. 267–279.

    Article  CAS  PubMed  Google Scholar 

  22. Grzymala, S., L’expérimentation par la toxine, Bull. Med. Leg. Tox., 1965, vol. 8, pp. 73–83.

    Google Scholar 

  23. Gurevich, L.S. and Nezdoiminogo, E.L., Possible use of the psilocybin and muscarine alkaloids in chemotaxonomy of the genus Inocybe (Fr.) Fr., Mikol. Fitopatol., 1990, vol. 24, no. 2, pp. 97–105.

    CAS  Google Scholar 

  24. Guzman, G., Allen, J.W., and Gartz, J., A worldwide geographical distribution of the neurotropic fungi, an analysis and discussion, An. Mus. Civ. Rover., 1998, vol. 14, pp. 189–280.

    Google Scholar 

  25. Haberl, B., Pfab, R., Berndt, S., et al., Case series: alcohol intolerance with coprine-like syndrome after consumption of the mushroom Lepiota aspera (Pers.: Fr.) Quél., 1886 (Freckled Dapperling), Clin. Toxicol., 2011, vol. 49, no. 2, pp. 113–114.

    Article  Google Scholar 

  26. Halberstadt, A. and Geyer, M., Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens, Neuropharmacology, 2011, vol. 61, pp. 364–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hatfield, G.M. and Schaumberg, J.P., Isolation and structure studies of coprine, the disulfiram-like constituent of C. atramentarius, Lloydia, 1975, vol. 38, pp. 489–496.

    CAS  PubMed  Google Scholar 

  28. Hawksworth, D.L. and Lücking, R., Fungal diversity revisited: 2.2 to 3.8 million species, Microbiol. Spectrum, 2017, vol. 5, pp. 79–95.

    Article  Google Scholar 

  29. Hendrich, J., van Minh, A.T., Heblich, F., et al., Pharmacological disruption of calcium channel trafficking by the α2δ ligand gabapentin, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 9, pp. 3628–3633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Herrmann, A., Hedman, H., Rosen, J., et al., Analysis of the mushroom nephrotoxin orellanine and its glucosides, J. Nat. Prod., 2012, vol. 75, pp. 1690–1696.

    Article  CAS  PubMed  Google Scholar 

  31. Hilbig, S., Andries, T., and Steglich, W., Zur chemie und antibiotischen aktivität des carbolegerlings (A. xanthoderma), Angew. Chem., Int. Ed., 1985, vol. 97, no. 12, pp. 1063–1064.

    Article  CAS  Google Scholar 

  32. Ishida, M. and Shinozaki, H., Excitatory action of a plant extract, stizolobic acid, in the isolated spinal cord of the rat, Brain Res., 1988a, vol. 473, no. 1, pp. 193–197.

    Article  CAS  PubMed  Google Scholar 

  33. Ishida, M. and Shinozaki, H., Stizolobic acid, a competitive antagonist of the quisqualate-type receptor at the crayfish neuromuscular junction, Brain Res., 1988b, vol. 451, nos. 1–2, pp. 353–356.

    Article  PubMed  Google Scholar 

  34. Iwafuchi, Y., Morita, T., Kobayashi, H., et al., Delayed onset acute renal failure associated with Amanita pseudoporphyria Hongo ingestion, Int. Med., 2003, vol. 42, no. 1, pp. 78–81.

    Article  Google Scholar 

  35. Jaeger, R.J.R., Lamshöft, M., Gottfried, S., et al., HR–MALDI–MS imaging assisted screening of β-carboline alkaloids discovered from Mycena metata, J. Nat. Prod., 2013, vol. 76, no. 2, pp. 127–134.

    Article  CAS  PubMed  Google Scholar 

  36. Jin, Z., Muscarine, imidazole, oxazole and thiazole alkaloids, Nat. Prod. Rep., 2016, vol. 33, no. 11, pp. 1268–1317.

    Article  CAS  PubMed  Google Scholar 

  37. Kawaguchi, T., Suzuki, T., Kobayashi, Y., et al., Unusual amino acid derivatives from the mushroom Pleurocybella porrigens, Tetrahedron, 2010, vol. 66, pp. 504–507.

    Article  CAS  Google Scholar 

  38. Klinika, diagnostika, lechenie, sudebno-meditsinskaya ekspertiza otravlenii gribami. Posobie dlya vrachei (Clinic, Diagnosis, Treatment, Forensic Examination of Mushroom Poisoning: Guide for Physicians), Bonitenko, E.Yu., Ed., St. Petersburg: ELBI-SPb, 2016.

  39. Konno, K., Hayano, K., Shirahama, H., et al., Clitidine, a new toxic pyridine nucleoside from clitocybe acromelalga, Tetrahedron, 1982, vol. 38, no. 22, pp. 3281–3284.

    Article  CAS  Google Scholar 

  40. Koppaka, V., Thompson, D.C., Chen, Y., et al., Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application, Pharmacol. Rev., 2012, vol. 64, no. 3, pp. 520–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krüzselyi, D., Vetter, J., Ott, P.G., et al., Isolation and structural elucidation of a novel brunnein-type antioxidant β-carboline alkaloid from Cyclocybe cylindracea, Fitoterapia, 2019, vol. 137, pp. 1–5.

    Article  CAS  Google Scholar 

  42. Lundström, J., β-Phenethylamines and ephedrines of plant origin, in The Alkaloids: Chemistry and Pharmacology, Cordell, G.A., Ed., San Diego: Academic, 1989, chap. 2, pp. 77–154.

  43. Lurie, Y., Wasser, S.P., Taha, M., et al., Mushroom poisoning from species of genus Inocybe (fiber head mushroom): a case series with exact species identification, Clin. Toxicol., 2009, vol. 47, pp. 562–565.

    Article  Google Scholar 

  44. MacLean, K.A., Johnson, M.W., and Griffiths, R.R., Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness, J. Psychopharm., 2011, vol. 25, no. 11, pp. 1453–1461.

    Article  CAS  Google Scholar 

  45. Madsen, M.K., Fisher, P.M., Burmester, D., et al., Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels, Neuropsychopharmacology, 2019, vol. 44, no. 7, pp. 1328–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Malysheva, E.F., Opredelitel’ gribov Rossii: Poryadok agarikovye. Vyp. 2. Semeistvo bol’bitievye (Guide for Identification of Russian Fungi: Order Agaricales, No. 2: Family Bolbitiaceae), St. Petersburg: Nestor-Istoriya, 2018.

  47. Michelot, D. and Toth, B., Poisoning by Gyromitra esculenta—a review, J. App. Toxicol., 1991, vol. 11, no. 4, pp. 235–243.

    Article  CAS  Google Scholar 

  48. Michelot, D. and Melendez-Howell, L.M., Amanita muscaria: chemistry, biology, toxicology and ethnomycology, Mycol. Res., 2003, vol. 107, no. 2, pp. 131–146.

    Article  CAS  PubMed  Google Scholar 

  49. Minami, T., Matsumura, S., Nishizawa, M., et al., Acute and late effects on induction of allodynia by acromelic acid, a mushroom poison related structurally to kainic acid, Br. J. Pharm., 2004, vol. 142, no. 4, pp. 679–688.

    Article  CAS  Google Scholar 

  50. Moser, M., Cortinarius Fr. untergattung Leprocybe subgen. nov., die rauhkopfe, Z. Pilzkd., 1969, vol. 35, pp. 213–248.

    Google Scholar 

  51. Musselius, S.G. and Ryk, A.A., Otravleniya gribami (Mushroom Poisoning), Moscow: Demiurg-ART, 2002.

  52. Nezdoiminogo, E.L., Opredelitel’ gribov Rossii: Poryadok agarikovye. Vyp. 1. Semeistvo Pautinkovye (Guide for Identification of Russian Fungi: Order Agaricales, No. 1: Family Cortinariaceae), St. Petersburg: Nauka, 1996.

  53. Omoto, H., Matsumura, S., Kitano, M., et al., Comparison of mechanisms of allodynia induced by acromelic acid A between early and late phases, Eur. J. Pharm., 2015, vol. 760, pp. 42–48.

    Article  CAS  Google Scholar 

  54. Patočka, J., Natural cholinesterase inhibitors from mushrooms, Mil. Med. Sci. Lett., 2012, vol. 81, no. 1, pp. 40–44.

    Article  Google Scholar 

  55. Patočka, J., Pita, R., and Kuča, K., Gyromitrin, mushroom toxin of Gyromitra spp., Mil. Med. Sci. Lett., 2012, vol. 81, no. 2, pp. 61–67.

    Article  Google Scholar 

  56. Perisetti, A., Raghavapuram, S., Sheikh, A., et al., Mushroom poisoning mimicking painless progressive jaundice: a case report with review of the literature, Cureus, 2018, vol. 10, no. 4, pp. 24–36.

    Google Scholar 

  57. Sandargo, B., Chepkirui, C., Cheng, T., et al., Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals, Biotechnol. Adv., 2019, vol. 37, no. 6, pp. 107–344.

    Article  CAS  Google Scholar 

  58. Saviuc, P.F., Danel, V.C., Moreau, P.A., et al., Erythromelalgia and mushroom poisoning, J. Clin. Toxicol., 2001, vol. 39, no. 4, pp. 403–407.

    CAS  Google Scholar 

  59. Schüffler, A., Secondary metabolites of basidiomycetes, in Physiology and Genetics: Selected Basic and Applied Aspects, Anke, T. and Schüffler A., Eds., 2nd ed., New York: Springer-Verlag, 2018, pp. 231–275.

    Google Scholar 

  60. Shao, D., Tang, S., Healy, R.A., et al., A novel orellanine containing mushroom Cortinarius armillatus, Toxicon, 2016, vol. 114, pp. 65–74.

    Article  CAS  PubMed  Google Scholar 

  61. Shi, G.Q., Zhang, J., Huang, W.L., et al., Retrospective study on 116 unexpected sudden cardiac deaths in Yunnan, China, Chin. J. Epidemiol., 2006, vol. 27, pp. 96–101.

    Google Scholar 

  62. Shivrina, A.N., Biologicheskie aktivnye veshchestva vysshikh gribov (Biologically Active Substances of Higher Fungi), Leningrad: Nauka, 1965.

  63. Spoerke, D.G. and Rumack, B.H., Handbook of Mushroom Poisoning: Diagnosis and Treatment, Boca Raton, FL: CRC Press, 1994.

    Google Scholar 

  64. Stebelska, K., Fungal hallucinogens psilocin, ibotenic acid and muscimol, Ther. Drug Monit., 2013, vol. 35, no. 4, pp. 420–442.

    Article  CAS  PubMed  Google Scholar 

  65. Tamborini, L., Mastronardi, F., Lo Presti, L., et al., Synthesis of L-tricholomic acid analogues and pharmacological characterization at ionotropic glutamate receptors, Chem. Select., 2017, vol. 2, no. 31, pp. 10295–10299.

    CAS  Google Scholar 

  66. Teichert, A., Schmidt, J., Porzel, A., et al., Brunneins A–C, β-carboline alkaloids from Cortinarius brunneus, J. Nat. Prod., 2007, vol. 70, no. 9, pp. 1529–1531.

    Article  CAS  PubMed  Google Scholar 

  67. The Merck Index:  An Encyclopedia of Chemicals, Drugs, and Biologicals, O’Neil, M.J., et al., Eds., Whitehouse Station, NJ: Merck, 2006, 13th ed.

  68. Tsuji, K., Nakamura, Y., Ogata, T., et al., Neurotoxicity of acromelic acid in cultured neurons from rat spinal cord, Neuroscience, 1995, vol. 68, no. 2, pp. 585–591.

    Article  CAS  PubMed  Google Scholar 

  69. Vishnevskii, M.V., Yadovitye griby Rossii (Poisonous Mushrooms of Russia), Moscow: Prospekt, 2019.

  70. Vizzini, A. and Ercole, E., Paralepistopsis gen. nov. and Paralepista (Basidiomycota, Agaricales), Mycotaxon, 2012, vol. 120, no. 1, pp. 253–267.

    Article  Google Scholar 

  71. Vollenweider, F.X., Vontobel, P., Hell, D., and Leenders, K.L., 5-HAT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man—a PET study with [11C] raclopride, Neuropsychopharmacology, 1999, vol. 20, pp. 424–433.

    Article  CAS  PubMed  Google Scholar 

  72. Wakimoto, T., Asakawa, T., Akahoshi, S., et al., Proof of the existence of an unstable amino acid: pleurocybellaziridine in Pleurocybella porrigens, Angew. Chem., Int. Ed., 2010, vol. 50, no. 5, pp. 1168–1170.

    Article  CAS  Google Scholar 

  73. Wang, H., Zhao, H., Song, L., et al., Pathological study of unexpected sudden death clustered in family or village in Yunnan province: report of 29 cases of autopsy, Zhonghua Yixue Zazhi (Beijing), 2007, vol. 87, no. 31, pp. 2209–2214.

    PubMed  Google Scholar 

  74. West, P.L., Lindgren, J., and Horowitz, B.Z., Amanita smithiana mushroom ingestion: a case of delayed renal failure and literature review, J. Med. Toxicol., 2009, vol. 5, no. 1, pp. 32–38.

    Article  PubMed  PubMed Central  Google Scholar 

  75. White, J., Weinstein, S.A., De Haro, L., et al., Mushroom poisoning: a proposed new clinical classification, Toxicon, 2019, vol. 157, pp. 53–65.

    Article  CAS  PubMed  Google Scholar 

  76. Wurita, A., Hasegawa, K., Konno, K., et al., Quantification of clitidine in caps and stems of poisonous mushroom P. acromelalga by hydrophilic interaction liquid chromatography-tandem mass spectrometry, Forensic Toxicol., 2019, vol. 37, no. 2, pp. 378–386.

    Article  CAS  Google Scholar 

  77. Wurst, M., Kysilka, R., and Flieger, M., Psychoactive tryptamines from basidiomycetes, Folia Microbiol., 2002, vol. 47, no. 1, pp. 3–27.

    Article  CAS  Google Scholar 

  78. Xu, Y.C., Xie, X.-X., Zhou, Z.Y., et al., A new monoterpene from the poisonous mushroom Trogia venenata, which has caused sudden unexpected death in Yunnan province, China, Nat. Prod. Res., 2018, vol. 1, pp. 2547–2552.

    Article  CAS  Google Scholar 

  79. Yang, M.L., Kuo, P.C., Hwang, T.L., et al., Anti-inflammatory principles from Cordyceps sinensis, J. Nat. Prod., 2011, vol. 74, no. 9, pp. 1996–2000.

    Article  CAS  PubMed  Google Scholar 

  80. Yang, Z.L., Li, Y.C., Tang, L.P., et al., Trogia venenata (Agaricales), a novel poisonous species which has caused hundreds of deaths in southwestern China, Mycol. Prog., 2012, vol. 11, no. 4, pp. 937–945.

    Article  Google Scholar 

  81. Yin, X., Yang, A., and Gao, J.-M., Mushroom toxins: chemistry and toxicology, J. Agric. Food Chem., 2019, vol. 18, no. 67, pp. 5053–5071.

    Article  CAS  Google Scholar 

  82. Zhou, Z.Y., Shi, G.Q., Fontaine, R., et al., Evidence for the natural toxins from the mushroom Trogia venenata as a cause of sudden unexpected death in Yunnan province, China, Angew. Chem., Int. Ed., 2012, vol. 51, no. 10, pp. 2368–2370.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Khovpachev, S. V. Chepur or S. V. Volobuev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by A. Butanaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khovpachev, A.A., Basharin, V.A., Chepur, S.V. et al. Actual Concepts of Higher Fungi’s Toxins: Simple Nitrogen-Containing Compounds. Biol Bull Rev 11, 198–212 (2021). https://doi.org/10.1134/S2079086421020055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421020055

Keywords:

Navigation